Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Prog Neurobiol ; 205: 102121, 2021 10.
Article in English | MEDLINE | ID: mdl-34273456

ABSTRACT

The brain is capable of integrating signals from multiple sensory modalities. Such multisensory integration can occur in areas that are commonly considered unisensory, such as planum temporale (PT) representing the auditory association cortex. However, the roles of different afferents (feedforward vs. feedback) to PT in multisensory processing are not well understood. Our study aims to understand that by examining laminar activity patterns in different topographical subfields of human PT under unimodal and multisensory stimuli. To this end, we adopted an advanced mesoscopic (sub-millimeter) fMRI methodology at 7 T by acquiring BOLD (blood-oxygen-level-dependent contrast, which has higher sensitivity) and VAPER (integrated blood volume and perfusion contrast, which has superior laminar specificity) signal concurrently, and performed all analyses in native fMRI space benefiting from an identical acquisition between functional and anatomical images. We found a division of function between visual and auditory processing in PT and distinct feedback mechanisms in different subareas. Specifically, anterior PT was activated more by auditory inputs and received feedback modulation in superficial layers. This feedback depended on task performance and likely arose from top-down influences from higher-order multimodal areas. In contrast, posterior PT was preferentially activated by visual inputs and received visual feedback in both superficial and deep layers, which is likely projected directly from the early visual cortex. Together, these findings provide novel insights into the mechanism of multisensory interaction in human PT at the mesoscopic spatial scale.


Subject(s)
Brain Mapping , Brain , Acoustic Stimulation , Auditory Perception , Humans , Magnetic Resonance Imaging
2.
Neuroimage ; 215: 116828, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32276065

ABSTRACT

Two ongoing movements in human cognitive neuroscience have researchers shifting focus from group-level inferences to characterizing single subjects, and complementing tightly controlled tasks with rich, dynamic paradigms such as movies and stories. Yet relatively little work combines these two, perhaps because traditional analysis approaches for naturalistic imaging data are geared toward detecting shared responses rather than between-subject variability. Here, we review recent work using naturalistic stimuli to study individual differences, and advance a framework for detecting structure in idiosyncratic patterns of brain activity, or "idiosynchrony". Specifically, we outline the emerging technique of inter-subject representational similarity analysis (IS-RSA), including its theoretical motivation and an empirical demonstration of how it recovers brain-behavior relationships during movie watching using data from the Human Connectome Project. We also consider how stimulus choice may affect the individual signal and discuss areas for future research. We argue that naturalistic neuroimaging paradigms have the potential to reveal meaningful individual differences above and beyond those observed during traditional tasks or at rest.


Subject(s)
Brain/diagnostic imaging , Connectome/methods , Individuality , Motion Pictures , Neuroimaging/methods , Brain/physiology , Humans , Magnetic Resonance Imaging/methods , Photic Stimulation/methods
3.
Infect Immun ; 82(10): 4169-81, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25047850

ABSTRACT

Studies on the innate immune response against microbial infections in Drosophila melanogaster involve mutant strains and their reference strains that act as experimental controls. We used five standard D. melanogaster laboratory reference strains (Oregon R, w1118, Canton-S, Cinnabar Brown, and Yellow White [YW]) and investigated their response against two pathogenic bacteria (Photorhabdus luminescens and Enterococcus faecalis) and two nonpathogenic bacteria (Escherichia coli and Micrococcus luteus). We detected high sensitivity among YW flies to bacterial infections and increased bacterial growth compared to the other strains. We also found variation in the transcription of certain antimicrobial peptide genes among strains, with Oregon and YW infected flies showing the highest and lowest gene transcription levels in most cases. We show that Oregon and w1118 flies possess more circulating hemocytes and higher levels of phenoloxidase activity than the other strains upon infection with the nonpathogenic bacteria. We further observed reduced fat accumulation in YW flies infected with the pathogenic bacteria, which suggests a possible decline in physiological condition. Finally, we found that nitrite levels are significantly lower in infected and uninfected YW flies compared to w1118 flies and that nitric oxide synthase mutant flies in YW background are more susceptible to bacterial infection compared to mutants in w1118 background. Therefore, increased sensitivity of YW flies to bacterial infections can be partly attributed to lower levels of nitric oxide. Such studies will significantly contribute toward a better understanding of the genetic variation between D. melanogaster reference strains.


Subject(s)
Drosophila melanogaster/microbiology , Enterococcus faecalis/immunology , Escherichia coli/immunology , Micrococcus luteus/immunology , Nitric Oxide/metabolism , Photorhabdus/immunology , Animals , Bacterial Infections/immunology , Bacterial Infections/microbiology , Disease Models, Animal , Drosophila melanogaster/immunology , Female , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...