Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Cancer Cell ; 42(2): 283-300.e8, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38181797

ABSTRACT

Pediatric patients with high-risk neuroblastoma have poor survival rates and urgently need more effective treatment options with less side effects. Since novel and improved immunotherapies may fill this need, we dissect the immunoregulatory interactions in neuroblastoma by single-cell RNA-sequencing of 24 tumors (10 pre- and 14 post-chemotherapy, including 5 pairs) to identify strategies for optimizing immunotherapy efficacy. Neuroblastomas are infiltrated by natural killer (NK), T and B cells, and immunosuppressive myeloid populations. NK cells show reduced cytotoxicity and T cells have a dysfunctional profile. Interaction analysis reveals a vast immunoregulatory network and identifies NECTIN2-TIGIT as a crucial immune checkpoint. Combined blockade of TIGIT and PD-L1 significantly reduces neuroblastoma growth, with complete responses (CR) in vivo. Moreover, addition of TIGIT+PD-L1 blockade to standard relapse treatment in a chemotherapy-resistant Th-ALKF1174L/MYCN 129/SvJ syngeneic model induces CR. In conclusion, our integrative analysis provides promising targets and a rationale for immunotherapeutic combination strategies.


Subject(s)
B7-H1 Antigen , Neuroblastoma , Humans , Child , Neoplasm Recurrence, Local , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Receptors, Immunologic/genetics , Immunotherapy , Sequence Analysis, RNA
2.
J Pers Med ; 11(9)2021 Sep 17.
Article in English | MEDLINE | ID: mdl-34575700

ABSTRACT

Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αß-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αß-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.

3.
J Biotechnol ; 338: 71-80, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34271056

ABSTRACT

The advent of the CRISPR/Cas9 system has transformed the field of human genome engineering and has created new perspectives in the development of innovative cell therapies. However, the absence of a simple, fast and efficient delivery method of CRISPR/Cas9 into primary human cells has been limiting the progress of CRISPR/Cas9-based therapies. Here, we describe an optimized protocol for iTOP-mediated delivery of CRISPR/Cas9 in various human cells, including primary T cells, induced pluripotent stem cells (hiPSCs), Jurkat, ARPE-19 and HEK293 cells. We compare iTOP to other CRISPR/Cas9 delivery methods, such as electroporation and lipofection, and evaluate the corresponding gene-editing efficiencies and post-treatment cell viabilities. We demonstrate that the gene editing achieved by iTOP-mediated delivery of CRISPR/Cas9 is 40-95 % depending on the cell type, while post-iTOP cell viability remains high in the range of 70-95 %. Collectively, we present an optimized workflow for a simple, high-throughput and effective iTOP-mediated delivery of CRISPR/Cas9 to engineer difficult-to-transduce human cells. We believe that the iTOP technology® could contribute to the development of novel CRISPR/Cas9-based cell therapies.


Subject(s)
CRISPR-Cas Systems , T-Lymphocytes , CRISPR-Cas Systems/genetics , Gene Editing , Genome, Human , HEK293 Cells , Humans
4.
J Immunother Cancer ; 9(5)2021 05.
Article in English | MEDLINE | ID: mdl-34049929

ABSTRACT

BACKGROUND: Current immunotherapy for patients with high-risk neuroblastoma involves the therapeutic antibody dinutuximab that targets GD2, a ganglioside expressed on the majority of neuroblastoma tumors. Opsonized tumor cells are killed through antibody-dependent cellular cytotoxicity (ADCC), a process mediated by various immune cells, including neutrophils. The capacity of neutrophils to kill dinutuximab-opsonized tumor cells can be further enhanced by granulocyte-macrophage colony-stimulating factor (GM-CSF), which has been shown in the past to improve responses to anti-GD2 immunotherapy. However, access to GM-CSF (sargramostim) is limited outside of Northern America, creating a high clinical need for an alternative method to stimulate dinutuximab responsiveness in the treatment of neuroblastoma. In this in vitro study, we have investigated whether clinically well-established granulocyte colony-stimulating factor (G-CSF) can be a potentially suitable alternative for GM-CSF in the dinutuximab immunotherapy regimen of patients with neuroblastoma. METHODS: We compared the capacity of neutrophils stimulated either in vitro or in vivo with GM-CSF or G-CSF to kill dinutuximab-opsonized GD2-positive neuroblastoma cell lines and primary patient tumor material. Blocking experiments with antibodies inhibiting either respective Fc gamma receptors (FcγR) or neutrophil integrin CD11b/CD18 demonstrated the involvement of these receptors in the process of ADCC. Flow cytometry and live cell microscopy were used to quantify and visualize neutrophil-neuroblastoma interactions. RESULTS: We found that G-CSF was as potent as GM-CSF in enhancing the killing capacity of neutrophils towards neuroblastoma cells. This was observed with in vitro stimulated neutrophils, and with in vivo stimulated neutrophils from both patients with neuroblastoma and healthy donors. Enhanced killing due to GM-CSF or G-CSF stimulation was consistent regardless of dinutuximab concentration, tumor-to-neutrophil ratio and concentration of the stimulating cytokine. Both GM-CSF and G-CSF stimulated neutrophils required FcγRIIa and CD11b/CD18 integrin to perform ADCC, and this was accompanied by trogocytosis of tumor material by neutrophils and tumor cell death in both stimulation conditions. CONCLUSIONS: Our preclinical data support the use of G-CSF as an alternative stimulating cytokine to GM-CSF in the treatment of high-risk neuroblastoma with dinutuximab, warranting further testing of G-CSF in a clinical setting.


Subject(s)
Adjuvants, Immunologic/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Cytotoxicity, Immunologic/drug effects , Granulocyte Colony-Stimulating Factor/pharmacology , Granulocyte-Macrophage Colony-Stimulating Factor/pharmacology , Neuroblastoma/drug therapy , Neutrophils/drug effects , CD11b Antigen/metabolism , CD18 Antigens/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Coculture Techniques , Humans , Neuroblastoma/immunology , Neuroblastoma/metabolism , Neuroblastoma/pathology , Neutrophils/immunology , Neutrophils/metabolism , Neutrophils/pathology , Receptors, IgG/metabolism , Trogocytosis/drug effects , Tumor Microenvironment
5.
Sci Adv ; 7(6)2021 02.
Article in English | MEDLINE | ID: mdl-33547074

ABSTRACT

Neuroblastoma is a childhood cancer that resembles developmental stages of the neural crest. It is not established what developmental processes neuroblastoma cancer cells represent. Here, we sought to reveal the phenotype of neuroblastoma cancer cells by comparing cancer (n = 19,723) with normal fetal adrenal single-cell transcriptomes (n = 57,972). Our principal finding was that the neuroblastoma cancer cell resembled fetal sympathoblasts, but no other fetal adrenal cell type. The sympathoblastic state was a universal feature of neuroblastoma cells, transcending cell cluster diversity, individual patients, and clinical phenotypes. We substantiated our findings in 650 neuroblastoma bulk transcriptomes and by integrating canonical features of the neuroblastoma genome with transcriptional signals. Overall, our observations indicate that a pan-neuroblastoma cancer cell state exists, which may be attractive for novel immunotherapeutic and targeted avenues.


Subject(s)
Neural Stem Cells , Neuroblastoma , Child , Humans , Neural Crest/metabolism , Neural Stem Cells/metabolism , Neuroblastoma/genetics , Neuroblastoma/metabolism , Neuroblastoma/pathology , RNA, Messenger/genetics , Transcriptome
6.
Sci Rep ; 10(1): 17667, 2020 10 19.
Article in English | MEDLINE | ID: mdl-33077751

ABSTRACT

Neuroblastoma resection represents a major challenge in pediatric surgery, because of the high risk of complications. Fluorescence-guided surgery (FGS) could lower this risk by facilitating discrimination of tumor from normal tissue and is gaining momentum in adult oncology. Here, we provide the first molecular-targeted fluorescent agent for FGS in pediatric oncology, by developing and preclinically evaluating a GD2-specific tracer consisting of the immunotherapeutic antibody dinutuximab-beta, recently approved for neuroblastoma treatment, conjugated to near-infrared (NIR) fluorescent dye IRDye800CW. We demonstrated specific binding of anti-GD2-IRDye800CW to human neuroblastoma cells in vitro and in vivo using xenograft mouse models. Furthermore, we defined an optimal dose of 1 nmol, an imaging time window of 4 days after administration and show that neoadjuvant treatment with anti-GD2 immunotherapy does not interfere with fluorescence imaging. Importantly, as we observed universal, yet heterogeneous expression of GD2 on neuroblastoma tissue of a wide range of patients, we implemented a xenograft model of patient-derived neuroblastoma organoids with differential GD2 expression and show that even low GD2 expressing tumors still provide an adequate real-time fluorescence signal. Hence, the imaging advancement presented in this study offers an opportunity for improving surgery and potentially survival of a broad group of children with neuroblastoma.


Subject(s)
Benzenesulfonates/therapeutic use , Brain Neoplasms/surgery , Fluorescent Dyes/therapeutic use , Gangliosides/metabolism , Indoles/therapeutic use , Neuroblastoma/surgery , Animals , Brain Neoplasms/metabolism , Cell Line, Tumor , Female , Flow Cytometry , Humans , Mice , Mice, Nude , Neoplasm Transplantation , Neoplasms, Experimental , Neuroblastoma/metabolism , Tissue Array Analysis
7.
Nat Commun ; 9(1): 4866, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30451831

ABSTRACT

Chromosome 17q gains are almost invariably present in high-risk neuroblastoma cases. Here, we perform an integrative epigenomics search for dosage-sensitive transcription factors on 17q marked by H3K27ac defined super-enhancers and identify TBX2 as top candidate gene. We show that TBX2 is a constituent of the recently established core regulatory circuitry in neuroblastoma with features of a cell identity transcription factor, driving proliferation through activation of p21-DREAM repressed FOXM1 target genes. Combined MYCN/TBX2 knockdown enforces cell growth arrest suggesting that TBX2 enhances MYCN sustained activation of FOXM1 targets. Targeting transcriptional addiction by combined CDK7 and BET bromodomain inhibition shows synergistic effects on cell viability with strong repressive effects on CRC gene expression and p53 pathway response as well as several genes implicated in transcriptional regulation. In conclusion, we provide insight into the role of the TBX2 CRC gene in transcriptional dependency of neuroblastoma cells warranting clinical trials using BET and CDK7 inhibitors.


Subject(s)
Brain Neoplasms/genetics , Forkhead Box Protein M1/genetics , Gene Expression Regulation, Neoplastic , Kv Channel-Interacting Proteins/genetics , N-Myc Proto-Oncogene Protein/genetics , Neuroblastoma/genetics , Repressor Proteins/genetics , T-Box Domain Proteins/genetics , Antineoplastic Agents/pharmacology , Azepines/pharmacology , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Survival/drug effects , Cyclin-Dependent Kinases/genetics , Cyclin-Dependent Kinases/metabolism , DNA Copy Number Variations , Epigenesis, Genetic , Forkhead Box Protein M1/metabolism , HEK293 Cells , Histones/genetics , Histones/metabolism , Humans , Kv Channel-Interacting Proteins/metabolism , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/metabolism , Neuroblastoma/pathology , Organoids/drug effects , Organoids/metabolism , Organoids/pathology , Panobinostat/pharmacology , Phenylenediamines/pharmacology , Pyrimidines/pharmacology , Repressor Proteins/metabolism , Signal Transduction , T-Box Domain Proteins/metabolism , Triazoles/pharmacology , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cyclin-Dependent Kinase-Activating Kinase
SELECTION OF CITATIONS
SEARCH DETAIL
...