Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Bioenerg ; 1864(4): 148997, 2023 11 01.
Article in English | MEDLINE | ID: mdl-37506995

ABSTRACT

The photoassembly of the Mn4CaO5 cluster in Mn-depleted photosystem II preparations (photoactivation) was studied under the influence of oxidants, reductants and pH. New data on the effect of these factors on the photoactivation yield are presented. The presence of the oxidant, ferricyanide, negatively affected the photoactivation yield over the entire concentration range studied (0-1 mM). In contrast to ferricyanide, the addition of the reductant, ferrocyanide, up to 1 mM resulted in an increase in the photoactivation yield. Other reductants either did not significantly affect (diphenylcarbazide) or suppressed (ascorbate) the photoactivation yield. The effect of ferrocyanide on photoactivation were found to be similar dichlorophenolindophenol. Investigation of the photoactivation yield as a function of pH revealed that the maximum yield was observed at pH 6.5 in the presence of ferrocyanide and DCPIP, and at pH 5.5 without additives. In addition, the photoactivation yield at pH 5.5 was the same without and with the addition of ferrocyanide or dichlorophenolindophenol. Although ferricyanide suppressed the photoactivation, the photoactivation yield increased in the presence of ferricyanide by shifting the pH to the acidic region. The samples contained approximately 25 % of the HP cyt b559, which was in the reduced state, as the absorbance at 559 nm was decreased upon addition of ferricyanide and subsequent addition of ferrocyanide returned the spectrum to the baseline. A possible relationship between the effect of factors on the photoactivation and the involvement of cyt b559 in the protection of PSII from oxidative damage on the donor side is discussed.


Subject(s)
Cytochromes b , Photosystem II Protein Complex , Photosystem II Protein Complex/metabolism , Ferrocyanides , Oxidation-Reduction , Reducing Agents , Light , 2,6-Dichloroindophenol , Manganese , Oxygen , Ferricyanides
2.
Plants (Basel) ; 10(2)2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33498596

ABSTRACT

In the original article, there was a mistake in the legend for ** Figure 5 ** [...].

3.
Plants (Basel) ; 8(9)2019 Sep 05.
Article in English | MEDLINE | ID: mdl-31491946

ABSTRACT

The photoproduction of superoxide anion radical (O2-•) and hydrogen peroxide (H2O2) in photosystem II (PSII) preparations depending on the damage to the water-oxidizing complex (WOC) was investigated. The light-induced formation of O2-• and H2O2 in the PSII preparations rose with the increased destruction of the WOC. The photoproduction of superoxide both in the PSII preparations holding intact WOC and the samples with damage to the WOC was approximately two times higher than H2O2. The rise of O2-• and H2O2 photoproduction in the PSII preparations in the course of the disassembly of the WOC correlated with the increase in the fraction of the low-potential (LP) Cyt b559. The restoration of electron flow in the Mn-depleted PSII preparations by exogenous electron donors (diphenylcarbazide, Mn2+) suppressed the light-induced formation of O2-• and H2O2. The decrease of O2-• and H2O2 photoproduction upon the restoration of electron transport in the Mn-depleted PSII preparations could be due to the re-conversion of the LP Cyt b559 into higher potential forms. It is supposed that the conversion of the high potential Cyt b559 into its LP form upon damage to the WOC leads to the increase of photoproduction of O2-• and H2O2 in PSII.

SELECTION OF CITATIONS
SEARCH DETAIL