Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
BMC Genomics ; 24(1): 689, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978344

ABSTRACT

BACKGROUND: The prevalence of Acinetobacter baumannii in nosocomial infections and its remarkable ability to develop antimicrobial resistance have been a critical issue in hospital settings. Here, we examined the genomic features related to resistance phenotype displayed by carbapenem-resistant A. baumannii (CRAB) MTC1106 (ST2) and MTC0619 (ST25). RESULTS: Resistome analysis of both strains revealed that MTC1106 possessed higher numbers of antimicrobial resistance genes compared to MTC0619. Some of those genetic determinants were present in accordance with the susceptibility profile of the isolates. The predicted ISAba1 region upstream of blaOXA-23 gene was related to carbapenem resistance since this IS element was well-characterized to mediate overexpression of carbapenemase genes and eventually provided capability to confer resistance. Unlike MTC0619 strain, which only carried class B and D ß-lactamase genes, MTC1106 strain also possessed blaTEM-1D, a class A ß-lactamase. Regarding to aminoglycosides resistance, MTC0619 contained 5 related genes in which all of them belonged to three groups of aminoglycosides modifying enzyme (AME), namely, N-acetyltransferase (AAC), O-nucleotidyltransferase (ANT), and O-phosphotransferase (APH). On the other hand, MTC1106 lacked only the AAC of which found in MTC0619, yet it also carried an armA gene encoding for 16S rRNA methyltransferase. Two macrolides resistance genes, mph(E) and msr(E), were identified next to the armA gene of MTC1106 isolate in which they encoded for macrolide 2'-phosphotransferase and ABC-type efflux pump, respectively. Besides acquired resistance genes, some chromosomal genes and SNPs associated with resistance to fluoroquinolones (i.e. gyrA and parC) and colistin (i.e. pmrCAB, eptA, and emrAB) were observed. However, gene expression analysis suggested that the genetic determinants significantly contributing to low-level colistin resistance remained unclear. In addition, similar number of efflux pumps genes were identified in both lineages with only the absence of adeC, a part of adeABC RND-type multidrug efflux pump in MTC0619 strain. CONCLUSIONS: We found that MTC1106 strain harbored more antimicrobial resistance genes and showed higher resistance to antibiotics than MTC0619 strain. Regarding genomic characterization, this study was likely the first genome comparative analysis of CARB that specifically included isolates belonging to ST2 and ST25 which were widely spread in Thailand. Taken altogether, this study suggests the importance to monitor the resistance status of circulating A. baumannii clones and identify genes that may contribute to shifting the resistance trend among isolates.


Subject(s)
Acinetobacter baumannii , Colistin , Colistin/pharmacology , Acinetobacter baumannii/genetics , Interleukin-1 Receptor-Like 1 Protein/genetics , RNA, Ribosomal, 16S , Microbial Sensitivity Tests , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Anti-Bacterial Agents/pharmacology , beta-Lactamases/genetics , Carbapenems/pharmacology , Aminoglycosides/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Phenotype
2.
Pharmaceuticals (Basel) ; 16(7)2023 Jun 23.
Article in English | MEDLINE | ID: mdl-37513832

ABSTRACT

Antimicrobial resistance (AMR) poses a significant threat to the health, social, environment, and economic sectors on a global scale and requires serious attention to addressing this issue. Acinetobacter baumannii was given top priority among infectious bacteria because of its extensive resistance to nearly all antibiotic classes and treatment options. Carbapenem-resistant A. baumannii is classified as one of the critical-priority pathogens on the World Health Organization (WHO) priority list of antibiotic-resistant bacteria for effective drug development. Although available genetic manipulation approaches are successful in A. baumannii laboratory strains, they are limited when employed on newly acquired clinical strains since such strains have higher levels of AMR than those used to select them for genetic manipulation. Recently, the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system has emerged as one of the most effective, efficient, and precise methods of genome editing and offers target-specific gene editing of AMR genes in a specific bacterial strain. CRISPR-based genome editing has been successfully applied in various bacterial strains to combat AMR; however, this strategy has not yet been extensively explored in A. baumannii. This review provides detailed insight into the progress, current scenario, and future potential of CRISPR-Cas usage for AMR-related gene manipulation in A. baumannii.

3.
Infect Drug Resist ; 15: 5813-5829, 2022.
Article in English | MEDLINE | ID: mdl-36213766

ABSTRACT

The toxin and antitoxin modules in bacteria consist of a toxin molecule that has activity to inhibit various cellular processes and its cognate antitoxin that neutralizes the toxin. This system is considered taking part in the formation of persister cells, which are a subpopulation of recalcitrant cells able to survive antimicrobial treatment without any resistance mechanisms. Importantly, persisters have been associated with long-term infections and treatment failures in healthcare settings. It is a public health concern since persisters can be involved in the evolution and dissemination of antimicrobial resistance amidst the aggravating spread of multidrug-resistant bacteria and insufficient novel antimicrobial therapy to tackle this issue. Salmonella enterica serovar Typhimurium is one of the most prevalent Salmonella serotypes in the world and is a leading cause of food-borne salmonellosis. S. Typhimurium has been known to cause persistent infection and a wealth of investigations on Salmonella persisters indicates that toxin and antitoxin modules play a role in mediating the phenotypic switch of persisters, rendering its survival ability in the presence of antimicrobial agents. In this review, we discuss findings regarding mechanisms that underly persistence in S. Typhimurium, especially the involvement of toxin and antitoxin modules.

4.
Front Cell Infect Microbiol ; 12: 882236, 2022.
Article in English | MEDLINE | ID: mdl-35782127

ABSTRACT

Colistin, the last resort for multidrug and extensively drug-resistant bacterial infection treatment, was reintroduced after being avoided in clinical settings from the 1970s to the 1990s because of its high toxicity. Colistin is considered a crucial treatment option for Acinetobacter baumannii and Pseudomonas aeruginosa, which are listed as critical priority pathogens for new antibiotics by the World Health Organization. The resistance mechanisms of colistin are considered to be chromosomally encoded, and no horizontal transfer has been reported. Nevertheless, in November 2015, a transmissible resistance mechanism of colistin, called mobile colistin resistance (MCR), was discovered. Up to ten families with MCR and more than 100 variants of Gram-negative bacteria have been reported worldwide. Even though few have been reported from Acinetobacter spp. and Pseudomonas spp., it is important to closely monitor the epidemiology of mcr genes in these pathogens. Therefore, this review focuses on the most recent update on colistin resistance and the epidemiology of mcr genes among non-fermentative Gram-negative bacilli, especially Acinetobacter spp. and P. aeruginosa.


Subject(s)
Acinetobacter baumannii , Colistin , Anti-Bacterial Agents/pharmacology , Colistin/pharmacology , Drug Resistance, Bacterial/genetics , Gram-Negative Bacteria/genetics , Humans , Pseudomonas aeruginosa/genetics
5.
PLoS One ; 16(11): e0259686, 2021.
Article in English | MEDLINE | ID: mdl-34735533

ABSTRACT

The increasing incidence of carbapenem resistance in Acinetobacter baumannii is a critical concern worldwide owing to the limitations of therapeutic alternatives. The most important carbapenem resistance mechanism for A. baumannii is the enzymatic hydrolysis mediated by carbapenemases, mostly OXA-type carbapenemases (class D) and, to a lesser extent, metallo-ß-lactamases (class B). Therefore, early and accurate detection of carbapenemase-producing A. baumannii is required to achieve the therapeutic efficacy of such infections. Many methods for carbapenemase detection have been proposed as effective tests for A. baumannii; however, none of them are officially recommended. In this study, three carbapenemase detection methods, namely, CarbaAcineto NP test, modified carbapenem inactivation method (mCIM), and simplified carbapenem inactivation method (sCIM) were evaluated for phenotypic detection of clinically isolated A. baumannii. The MICs of imipenem, meropenem, and doripenem were determined for 123 clinically isolated A. baumannii strains before performing three phenotypic detections. The overall sensitivity and specificity values were 89.09%/100% for the carbAcineto NP test, 71.82%/100% for sCIM, and 32.73%/33.13% for mCIM. CarbAcineto NP test and sCIM performed excellently (100% sensitivity) when both Class B and Class D carbapenemases were present in the same isolate. Based on the results, the combined detection method of sCIM and CarbAcineto NP test was proposed to detect carbapenemase-producing A. baumannii rather than a single assay, significantly increasing the sensitivity of detection to 98.18%. The proposed algorithm was more reliable and cost-effective than the CarbAcineto NP test alone. It can be easily applied in routine microbiology laboratories for developing countries with limited resources.


Subject(s)
Acinetobacter baumannii/drug effects , Acinetobacter baumannii/enzymology , Bacterial Proteins/metabolism , Biological Assay/methods , beta-Lactamases/metabolism , Algorithms , Carbapenems/pharmacology , Imipenem/pharmacology , Meropenem/pharmacology , Microbial Sensitivity Tests
6.
Ann Clin Microbiol Antimicrob ; 20(1): 19, 2021 Mar 20.
Article in English | MEDLINE | ID: mdl-33743736

ABSTRACT

BACKGROUND: Acinetobacter baumannii has emerged as one of the common multidrug resistance pathogens causing hospital-acquired infections. This study was conducted to elucidate the distribution of antimicrobial resistance genes in the bacterial population in Thailand. Multidrug-resistant A. baumannii (MDR A. baumannii) isolates were characterized phenotypically, and the molecular epidemiology of clinical isolates in 11 tertiary hospitals was investigated at a country-wide level. METHODS: A total of 135 nonrepetitive MDR A. baumannii isolates collected from tertiary care hospitals across 5 regions of Thailand were examined for antibiotic susceptibility, resistance genes, and sequence types. Multilocus sequence typing (MLST) was performed to characterize the spread of regional lineages. RESULTS: ST2 belonging to IC2 was the most dominant sequence type in Thailand (65.19%), and to a lesser extent, there was also evidence of the spread of ST164 (10.37%), ST129 (3.70%), ST16 (2.96%), ST98 (2.96%), ST25 (2.96%), ST215 (2.22%), ST338 (1.48%), and ST745 (1.48%). The novel sequence types ST1551, ST1552, ST1553, and ST1557 were also identified in this study. Among these, the blaoxa-23 gene was by far the most widespread in MDR A. baumannii, while the blaoxa-24/40 and blaoxa-58 genes appeared to be less dominant in this region. The results demonstrated that the predominant class D carbapenemase was blaOXA-23, followed by the class B carbapenemase blaNDM-like, while the mcr-1 gene was not observed in any isolate. Most of the MDR A. baumannii isolates were resistant to ceftazidime (99.23%), gentamicin (91.85%), amikacin (82.96%), and ciprofloxacin (97.78%), while all of them were resistant to carbapenems. The results suggested that colistin could still be effective against MDR A. baumannii in this region. CONCLUSION: This is the first molecular epidemiological analysis of MDR A. baumannii clinical isolates at the national level in Thailand to date. Studies on the clonal relatedness of MDR A. baumannii isolates could generate useful data to understand the local epidemiology and international comparisons of nosocomial outbreaks.


Subject(s)
Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Acinetobacter baumannii/isolation & purification , Anti-Bacterial Agents/pharmacology , Clone Cells/drug effects , Drug Resistance, Multiple, Bacterial , Molecular Epidemiology , Acinetobacter baumannii/genetics , Bacterial Proteins , Carbapenems/pharmacology , Ciprofloxacin/pharmacology , Colistin/pharmacology , Cross Infection/microbiology , Drug Resistance, Multiple, Bacterial/genetics , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Thailand , beta-Lactamases
7.
Antibiotics (Basel) ; 9(12)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287443

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAB) is a critical health concern for the treatment of infectious diseases. The aim of this study was to investigate the molecular epidemiology of CRAB emphasizing the presence of oxacillinase (OXA)-type ß-lactamase-encoding genes, one of the most important carbapenem resistance mechanisms. In this study, a total of 183 non-repetitive CRAB isolates collected from 11 tertiary care hospitals across Thailand were investigated. As a result, the blaoxa-51-like gene, an intrinsic enzyme marker, was detected in all clinical isolates. The blaoxa-23-like gene was presented in the majority of isolates (68.31%). In contrast, the prevalence rates of blaoxa-40/24-like and blaoxa-58-like gene occurrences in CRAB isolates were only 4.92% and 1.09%, respectively. All isolates were resistant to carbapenems, with 100% resistance to imipenem, followed by meropenem (98.91%) and doripenem (94.54%). Most isolates showed high resistance rates to ciprofloxacin (97.81%), ceftazidime (96.72%), gentamicin (91.26%), and amikacin (80.87%). Interestingly, colistin was found to be a potential drug of choice due to the high susceptibility of the tested isolates to this antimicrobial (87.98%). Most CRAB isolates in Thailand were of ST2 lineage, but some belonged to ST25, ST98, ST129, ST164, ST215, ST338, and ST745. Further studies to monitor the spread of carbapenem-resistant OXA-type ß-lactamase genes from A. baumannii in hospital settings are warranted.

8.
Antibiotics (Basel) ; 9(8)2020 Aug 14.
Article in English | MEDLINE | ID: mdl-32823820

ABSTRACT

Drug-resistant Acinetobacter baumannii (A. baumannii) infections are a critical global problem, with limited treatment choices. This study aims to determine the in vitro activities of colistin-sitafloxacin combinations against multidrug-, carbapenem- and colistin-resistant A. baumannii (MDR-AB, CRAB, CoR-AB, respectively) clinical isolates from tertiary care hospitals. We used the broth microdilution checkerboard and time-kill methods in this study. Synergy was found using both methods. The colistin-sitafloxacin combination showed synergy in MDR-AB, CRAB, and CoR-AB isolates (3.4%, 3.1%, and 20.9%, respectively). No antagonism was found in any type of drug-resistant isolate. The majority of CoR-AB isolates became susceptible to colistin (95.4%). The time-kill method also showed that this combination could suppress regrowth back to the initial inocula of all representative isolates. Our results demonstrated that the colistin-sitafloxacin combination might be an interesting option for the treatment of drug-resistant A. baumannii. However, further in vivo and clinical studies are required.

9.
Infect Chemother ; 51(2): 107-118, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31270990

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is considered as one of the most emerging threats in this century. Serious infections caused by this pathogen are often treated by carbapenems which are the last resource of antibiotics. Metallo-beta-lactamases (MBLs) production is one of the most important carbepenem resistance mechanisms and is usually related with nosocomial infections caused by P. aeruginosa. This study was aimed to determine the prevalence of MBL genes and distribution pattern of MBLs producing P. aeruginosa strains in Thailand. MATERIALS AND METHODS: Specific primers were designed to detect MBL genes including IMP-, VIM-, and NDM-type MBL genes. Multilocus sequence typing method was used to determine the dissemination pattern of carbapenem-resistance among multidrug-resistant (CR-MDR) P. aeruginosa. RESULTS: A total of 153 P. aeruginosa clinical isolates were characterized as CR-MDR. Among those, 31 P. aeruginosa clinical isolates (20.3%) presented metallo-beta-lactamase genes which could be divided into VIM-type (14 strains) and IMP-type (17 strains). blaIMP-1, blaIMP-13, blaIMP-14a, and blaVIM-2 genes were detected. Moreover, a novel IMP-type MBL, blaIMP-65 was discovered and it was demonstrated to be the unique group of MBLs in Thailand. It was of interest that ST235 was the major ST type in Thailand followed by ST964 and ST111 and ST235 was detected in both MBL harboring and non-MBL harboring strains. CONCLUSION: This study reported the dissemination of MBL gene including novel MBL, blaIMP-65. This study was also demonstrated major ST of P. aeruginosa which was ST235, followed by ST964 and ST111. Moreover, it is also the first report on many P. aeruginosa STs in Thailand: ST273, ST292, ST621, ST1584, and ST1816 which emphasized the dissemination trait difference of MBLs harboring P. aeruginosa in Thailand.

10.
Infect Drug Resist ; 11: 2151-2157, 2018.
Article in English | MEDLINE | ID: mdl-30464558

ABSTRACT

PURPOSE: Extended-spectrum ß-lactamases (ESBLs) have become an issue in community worldwide due to an increase in antibiotic resistance over the past decade. This study was aimed to investigate the phenotypic and genotypic characteristics of ESBL-producing Escherichia coli in Thailand. MATERIALS AND METHODS: In this study, all clinical isolates collected from tertiary hospitals in Thailand were identified as E. coli by biochemical tests and MALDI-TOF mass spectrometry. ESBL-producing E. coli was preliminary screened with disk diffusion method by cephalosporin disks and confirmed by the method of combination disk diffusion. Antimicrobial susceptibility test was used to determine MIC values of all ESBL-producing E. coli. For genotypic detection, a variety of ESBL genes were determined by PCR. Moreover, multilocus sequence typing (MLST) analysis was performed on internal portions of seven housekeeping genes for the diversity and phylogenetic relatedness of E. coli clonal group. RESULTS: Of the 285 ESBL-producing E. coli, most were susceptible to carbapenems. These strains showed a high resistance rate to ciprofloxacin (85.26%). The most frequently detected gene was bla CTX-M1 group at about 71.23% followed by bla CTX-M9 group (38.95%). The bla TEM, bla PER, bla GES, bla VEB, and bla SHV genes were identified in 31.93%, 5.96%, 4.56%, 3.51%, and 0.70% of ESBL-producing isolates, respectively. The bla OXA-10 gene was detected in only one strain. ESBL-producing E. coli isolates with high antimicrobial resistance were further investigated. Among those, E. coli sequence type ST38 was mostly found, followed by ST405, ST410, and ST131. It is noteworthy that the bla CTX-M gene was mainly detected in all four ST-type E. coli clones (ST38, ST405, ST410, and ST131). CONCLUSION: This study provided a recent evidence of the genetic diversity of ESBL-producing E. coli in Thailand. In addition, the profile related to antimicrobial resistance pattern in this region was also demonstrated.

11.
J Food Sci Technol ; 55(7): 2384-2394, 2018 Jul.
Article in English | MEDLINE | ID: mdl-30042553

ABSTRACT

Probiotics become important bacteria in our daily life due to their benefit on human health. In this study, a subset of bacterial strains from children was isolated and evaluated for beneficial probiotic traits such as antimicrobial activity, bile and acid tolerance, and pathogenic cell adherence inhibition. The strain with the best antimicrobial activity was selected for further characterization on the basis of morphological, biochemical characteristics and gene sequence. This strain was Gram-positive, oxidase and catalase-negative, and it produced acids by fermenting sugar and starch as carbon sources. Additionally, it could only hydrolyze bile-esculin, but not red blood cells. The 16S rDNA gene sequence revealed that this strain was Enterococcus faecalis. Interestingly, this strain effectively inhibited a variety of pathogens by acid and bacteriocin production and was bile-tolerant, able to survive under acidic condition. In the safety assessments, E. faecalis MTC 1032 could adhere to host epithelial cells and evidently inhibited pathogenic cell adhesion as demonstrated by cell reduction over time of E. coli ATCC 25922 and S. typhimurium ATCC 13311 on Caco-2 cell line. In summary, it was clearly represented that E. faecalis MTC 1032 provided suitable properties and could be a candidate as a probiotic strain in food supplements.

12.
BMC Complement Altern Med ; 16: 158, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27245046

ABSTRACT

BACKGROUND: The emergence of drug resistant pathogens becomes a crucial problem for infectious diseases worldwide. Among these bacteria, Pseudomonas aeruginosa is one of which highly resists to many currently used drugs and becomes a major concern in public health. Up till now, the search for potential antimicrobial agents has been still a challenge for researchers. METHODS: Broth microdilution assay was used to determine minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of the essential oils and antibiotics against P. aeruginosa. Inhibition activity of the essential oils under vapor condition was examined to obtain the minimum inhibitory dose (MID). Time-kill assay included in this study was performed according to CLSI guideline. Bioautographic assay was used to detect active components of the essential oil. Synergistic effect with currently used antibiotics was further examined by checkerboard assay. RESULTS AND DISCUSSION: In this study, a variety of essential oils were examined for anti-multidrug resistant P. aeruginosa (MDR-PA) activity, of which cinnamon bark oil showed the strongest antimicrobial activity against all clinical-isolated MDR-PA strains with MIC of 0.0562-0.225 % v/v and MBC of 0.1125-1.8 % v/v. Bioautographic results demonstrated that the active compounds of cinnamon bark oil were cinnamaldehyde and eugenol which showed strong inhibitory effect against P. aeruginosa. Interestingly, cinnamaldehyde, a major constituent of cinnamon bark oil, possessed stronger antimicrobial effect to P. aeruginosa than eugenol. Under gaseous condition, cinnamon bark oil and cinnamaldehyde showed antibacterial activity against MDR-PA strains with MID of 0.5-1 mg/L. Moreover, combination of cinnamon bark oil or cinnamaldehyde with currently used antibiotics was further studied by checkerboard assay to examine synergistic interactions on clinically isolated MDR-PA strains. Cinnamon bark oil and cinnamaldehyde combined with colistin demonstrated synergistic rates at 16.7 and 10 %, respectively. CONCLUSION: These results indicated that cinnamon bark oil and cinnamaldehyde might be active natural compounds which could be further examined as alternative treatment for multidrug-resistant P. aeruginosa infection.


Subject(s)
Acrolein/analogs & derivatives , Anti-Infective Agents/pharmacology , Oils, Volatile/pharmacology , Pseudomonas aeruginosa/drug effects , Acrolein/pharmacology , Drug Resistance, Multiple , Drug Synergism , Oils, Volatile/chemistry
14.
Microbiol Immunol ; 57(3): 170-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23278679

ABSTRACT

Carbapenem resistant Pseudomonas aeruginosa were isolated among multidrug-resistant (CR-MDR) organisms from tertiary hospitals in Thailand. Decreased expression of oprD mRNA (93.65%) was predominant followed by increased expression of mexAB-oprM mRNA (92.06%) and mexXY mRNA (63.49%). Interestingly, 23 of 126 (18.25%) isolates were susceptible to imipenem with down-regulated oprD expression and non-up-regulated mexCD-oprJ mRNA expression. Metallo-ß-lactamases production was clearly positive in 24 isolates (18.46%) and weakly positive in 12 isolates (9.23%). Among both of these sets of isolates, imp-1, imp-14 and vim-2 were identified. Hyperproduction of AmpC ß-lactamase had the lowest prevalence rate (3.97%). It was concluded that CR-MDR P. aeruginosa clinical isolates in Thailand possess multifactorial resistance mechanisms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Gene Expression Profiling , Humans , Microbial Sensitivity Tests , Pseudomonas aeruginosa/isolation & purification , Tertiary Care Centers , Thailand , beta-Lactamases/biosynthesis
15.
Ann Clin Microbiol Antimicrob ; 11: 25, 2012 Sep 13.
Article in English | MEDLINE | ID: mdl-22970983

ABSTRACT

BACKGROUND: Increased infection caused by multidrug resistant (MDR) Pseudomonas aeruginosa has raised awareness of the resistance situation worldwide. Carbapenem resistance among MDR (CR-MDR) P. aeruginosa has become a serious life-threatening problem due to the limited therapeutic options. Therefore, the objectives of this study were to determine the prevalence, the antibiotic susceptibility patterns and the relatedness of CR-MDR P. aeruginosa in tertiary hospitals across Thailand. METHODS: MDR P. aeruginosa from eight tertiary hospitals across Thailand were collected from 2007-2009. Susceptibility of P. aeruginosa clinical isolates was determined according to the Clinical and Laboratory Standards Institute guideline. Selected CR-MDR P. aeruginosa isolates were genetically analyzed by pulsed-field gel electrophoresis. RESULTS: About 261 clinical isolates were identified as MDR P. aeruginosa and approximately 71.65% were found to be CR-MDR P. aeruginosa. The result showed that the meropenem resistance rate was the highest reaching over 50% in every hospitals. Additionally, the type of hospitals was a major factor affecting the resistance rate, as demonstrated by significantly higher CR-MDR rates among university and regional hospitals. The fingerprinting map identified 107 clones with at least 95% similarity. Only 4 clones were detected in more than one hospital. CONCLUSIONS: Although the antibiotic resistance rate was high, the spreading of CR-MDR was found locally. Specific strains of CR-MDR did not commonly spread from one hospital to another. Importantly, clonal dissemination ratio indicated limited intra-hospital transmission in Thailand.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbapenems/pharmacology , Drug Resistance, Multiple, Bacterial , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/genetics , Genotype , Humans , Microbial Sensitivity Tests , Prevalence , Pseudomonas Infections/epidemiology , Pseudomonas aeruginosa/isolation & purification , Tertiary Care Centers/statistics & numerical data , Thailand/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL
...