Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Inorg Chem ; 63(16): 7386-7400, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38587408

ABSTRACT

The molecular spin-crossover phenomenon between high-spin (HS) and low-spin (LS) states is a promising route to next-generation information storage, sensing applications, and molecular spintronics. Spin-crossover complexes also provide a unique opportunity to study the ligand field (LF) properties of a system in both HS and LS states while maintaining the same ligand environment. Presently, we employ complementing valence and core-level spectroscopic methods to probe the electronic excited-state manifolds of the spin-crossover complex [FeII(H2B(pz)2)2phen]0. Light-induced excited spin-state trapping (LIESST) at liquid He temperatures is exploited to characterize magnetic and spectroscopic properties of the photoinduced HS state using SQUID magnetometry and magnetic circular dichroism spectroscopy. In parallel, Fe 2p3d RIXS spectroscopy is employed to examine the ΔS = 0, 1 excited LF states. These experimental studies are combined with state-of-the-art CASSCF/NEVPT2 and CASCI/NEVPT2 calculations characterizing the ground and LF excited states. Analysis of the acquired LF information further supports the notion that the spin-crossover of [FeII(H2B(pz)2)2phen]0 is asymmetric, evidenced by a decrease in eπ in the LS state. The results demonstrate the power of cross-correlating spectroscopic techniques with high and low LF information content to make accurate excited-state assignments, as well as the current capabilities of ab initio theory in interpreting these electronic properties.

2.
Dalton Trans ; 53(9): 4098-4107, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38314834

ABSTRACT

Cobalt dioxolenes are a well-known class of switchable coordination compounds showing intramolecular electron transfer, which is always accompanied by a spin state change at the cobalt center. Here, we present the first example of thermally switchable cobalt bis-dioxolenes where intramolecular electron transfer seems to take place, but the spin state change is suppressed. This leads to the detection of thermal transition between a common ls-CoIII(SQ˙-)(Cat2-) and an extremely rare ls-CoII(SQ˙-)2 electronic state (hs - high-spin, ls - low-spin, SQ˙- - benzosemiquinonate(1-) radical and Cat2- - catecholate(2-)). Parallel to the present work, a similar work but on cobalt mono-dioxolenes has just appeared (Chem. Eur. J., 2023, 29, e202300091), suggesting thermal transition between ls-CoIII(Cat2-) and ls-CoII(SQ˙-) electronic states.

3.
Chemistry ; 29(60): e202301480, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37477021

ABSTRACT

Irreversible two-photon photorearrangement of 1,2-diarylethenes is a unique process providing access to complex 2a1 ,5a-dihydro-5,6-dithiaacenaphthylene (DDA) heterocyclic core. This reaction was serendipitously discovered during studies on photoswitchable diarylethenes and was initially considered as a highly undesired process. However, in recent years, it has been recognized as an efficient photochemical reaction, interesting by itself and as a promising synthetic method for the synthesis of challenging molecules. Herein, we discuss the state-of-the-art in studies on this notable process.

4.
Dalton Trans ; 52(15): 4669-4673, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36988429

ABSTRACT

We report the synthesis and characterization of ionic compounds [(thf)4YbI]2[Ge9(Hyp)3]2 (1) and [(thf)5LnI]4[Ge9(Hyp)3]4 (Ln = Eu (2), Sm (3)), (Hyp = Si(SiMe3)3). All compounds were examined by UV-Vis spectroscopy and a blue luminescence of Eu2+ was found. The solid state magnetic measurements of complexes 2 and 3 confirmed the presence of divalent lanthanides.

5.
Inorg Chem ; 62(14): 5614-5621, 2023 Apr 10.
Article in English | MEDLINE | ID: mdl-36967670

ABSTRACT

We report the synthesis of three neutral complexes with different coordination modes of a di-silylated metalloid germanium cluster to divalent lanthanides [(thf)5Ln(ηn-Ge9(Hyp)2)] (Ln = Yb (1, n = 1); Eu (2, n = 2, 3), Sm (3, n = 2, 3); Hyp = Si(SiMe3)3) by the salt metathesis of LnI2 with K2[Ge9(Hyp)2] in THF. The complexes were characterized by elemental analysis, nuclear magnetic resonance and UV-vis-NIR spectroscopy, and single-crystal X-ray diffraction. In thf solution, the formation of contact or solvate-separated ion pairs depending on the concentration is assumed. Compound 2 exhibits a blue luminescence typical for Eu2+. The solid-state magnetic measurements of compounds 2 and 3 confirm the presence of divalent europium and samarium, respectively.

6.
Inorg Chem ; 60(18): 14230-14237, 2021 Sep 20.
Article in English | MEDLINE | ID: mdl-34403241

ABSTRACT

Switchable valence tautomeric metal complexes have been long suggested for applications as chemosensors. However, no such molecular sensors have been yet reported. Here, we present a concept for sensing and the first prototype molecular sensor based on valence tautomeric cobalt-dioxolenes. A valence tautomeric cobalt-dioxolene complex [ls-CoIII(SQ•)(Cat)(stypy)2] ⇄ [hs-CoII(SQ•)2(stypy)2] 1 (ls = low spin, hs = high spin, Cat = 3,5-di-tert-butylcatecholate(2-), SQ = one-electron oxidized, benzosemiquinone(1-) form of Cat, stypy = trans-4-styrylpyridine) has been used as a molecular sensor. The lability of axial stypy ligands of 1 in solution allows us to exchange stypy ligands by dimethyl sulfoxide and simple pyridine analytes in a controllable way, which triggers colorimetric and magnetic responses.

7.
Chem Commun (Camb) ; 57(38): 4730-4733, 2021 May 11.
Article in English | MEDLINE | ID: mdl-33977949

ABSTRACT

We report the synthesis, structure and magnetic properties of the first rare earth complexes of metalloid group 14 clusters [(thf)2Ln(Ge9Hyp3)2] (Ln = Eu, Sm, Hyp = Si(SiMe3)3). X-Ray crystallographic analysis and DFT calculations reveal a novel η2-coordination mode of the Ge9Hyp3 units and a slight distortion of the Ge9 cage.

8.
Dalton Trans ; 49(48): 17532-17536, 2020 Dec 22.
Article in English | MEDLINE | ID: mdl-33300528

ABSTRACT

Here, we synthesized a valence tautomeric cobalt-dioxolene complex featuring a protected anchoring group. At room temperature, the complex reveals a nearly pure low-spin-Co(iii)-catecholate state in the solid state, but a nearly pure high-spin-Co(ii)-semiquinonate state in toluene solution. Thermal switchability of the complex in solution and in the solid state is investigated.

9.
J Am Chem Soc ; 142(18): 8147-8159, 2020 05 06.
Article in English | MEDLINE | ID: mdl-32239927

ABSTRACT

A rare example of a dinuclear iron core with a non-linearly bridged dinitrogen ligand is reported in this work. One-electron reduction of [(tBupyrr2py)Fe(OEt2)] (1) (tBupyrr2py2- = 2,6-bis((3,5-di-tert-butyl)pyrrol-2-yl)pyridine) with KC8 yields the complex [K]2[(tBupyrr2py)Fe]2(µ2-η1:η1-N2) (2), where the unusual cis-divacant octahedral coordination geometry about each iron and the η5-cation-π coordination of two potassium ions with four pyrrolyl units of the ligand cause distortion of the bridging end-on µ-N2 about the FeN2Fe core. Attempts to generate a Et2O-free version of 1 resulted instead in a dinuclear helical dimer, [(tBupyrr2py)Fe]2 (3), via bridging of the pyridine moieties of the ligand. Reduction of 3 by two electrons under N2 does not break up the dimer, nor does it result in formation of 2 but instead formation of the ate-complex [K(OEt2)]2[(tBupyrr2py)Fe]2 (4). Reduction of 1 by two electrons and in the presence of crown-ether forms the tetraanionic N2 complex [K2][K(18-crown-6)]2(tBupyrr2py)Fe]2(µ2-η1:η1-N2) (5), also having a distorted FeN2Fe moiety akin to 2. Complex 2 is thermally unstable and loses N2, disproportionating to Fe nanoparticles among other products. A combination of single-crystal X-ray diffraction studies, solution and solid-state magnetic studies, and 57Fe Mössbauer spectroscopy has been applied to characterize complexes 2-5, whereas DFT studies have been used to help explain the bonding and electronic structure in these unique diiron-N2 complexes 2 and 5.

10.
Org Lett ; 22(2): 604-609, 2020 01 17.
Article in English | MEDLINE | ID: mdl-31909627

ABSTRACT

Manipulating the equilibrium between a ketone and an enol by light opens up ample opportunities in material chemistry and photopharmacology. By incorporating ß-ketoester into the ethene bridge of a photoactive diarylethene, we achieved reversible light-induced tautomerization to give thermally stable enol. In a pristine state, the tautomeric equilibrium is almost completely shifted toward the ketone. Photocyclization of diarylethene results in a new equilibrium containing a significant fraction of the enol tautomer.

11.
Inorg Chem ; 59(5): 2659-2666, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31509384

ABSTRACT

1,10-Phenanthroline represents a well-known versatile ligand system finding many applications in chemistry, biology, and material science. The properties and thus the use of these molecules are determined by coordinating metal ions and ligand substituents. Advanced ligand systems that, for instance, feature simultaneously an integrated photochrome and a surface anchoring group require the introduction of several differing substituents and the synthesis of asymmetric derivatives. In spite of a long history of the ligand system-and to our great surprise-a general synthetic approach allowing the introduction of differing substituents at positions (3,8) and (5,6) of 1,10-phenanthroline is not known. Here, we present a general approach for the synthesis of such phenanthrolines. The approach is used to integrate a diarylethene photochrome into a functionalized phenanthroline and thus to synthesize a novel photoswitchable phenanthroline and a corresponding spin-crossover molecular photoswitch. The functionality of both the ligand and its iron(II) complex at room temperature has been demonstrated. The importance of this work for chemical grafting of molecular switches based on phenanthrolines is emphasized.

12.
Beilstein J Org Chem ; 15: 2428-2437, 2019.
Article in English | MEDLINE | ID: mdl-31666877

ABSTRACT

A new family of photochromic diarylethene-based ligands bearing a 2-(imidazol-2-yl)pyridine coordination unit has been developed. Four members of the new family have been synthesized. The photoactive ligands feature non-aromatic ethene bridges (cyclopentene, cyclopentenone, and cyclohexenone), as well as closely spaced photoactive and metal coordination sites aiming a strong impact of photocyclization on the electronic structure of the coordinated metal ion. The ligands with cyclopentenone and cyclohexenone bridges show good cycloreversion quantum yields of 0.20-0.32. The thermal stability of closed-ring isomers reveals half-lives of up to 20 days in solution at room temperature. The ligands were used to explore coordination chemistry with iron(II) targeting photoswitchable spin-crossover complexes. Unexpectedly, dinuclear and tetranuclear iron(II) complexes were obtained, which were thoroughly characterized by X-ray crystallography, magnetic measurements, and Mössbauer spectroscopy. The formation of multinuclear complexes is facilitated by two coordination sites of the diarylethene, acting as a bridging ligand. The bridging nature of the diarylethene in the complexes prevents photocyclization.

13.
Nanoscale ; 11(42): 20006-20014, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31603165

ABSTRACT

Thin films of an iron(ii) complex with a photochromic diarylethene-based ligand and featuring a spin-crossover behaviour have been grown by sublimation in ultra-high vacuum on highly oriented pyrolytic graphite and spectroscopically characterized through high-resolution X-ray and ultraviolet photoemission, as well as via X-ray absorption. Temperature-dependent studies demonstrated that the thermally induced spin-crossover is preserved at a sub-monolayer (0.7 ML) coverage. Although the photochromic ligand ad hoc integrated into the complex allows the photo-switching of the spin state of the complex at room temperature both in bulk and for a thick film on highly oriented pyrolytic graphite, this photomagnetic effect is not observed in sub-monolayer deposits. Ab initio calculations justify this behaviour as the result of specific adsorbate-substrate interactions leading to the stabilization of the photoinactive form of the diarylethene ligand over photoactive one on the surface.

14.
ACS Omega ; 4(6): 10558-10570, 2019 Jun 30.
Article in English | MEDLINE | ID: mdl-31460154

ABSTRACT

Five neutral bis(µ-phenoxido)dicopper(II) complexes, [Cu2(LMe,Me,Me)2] (1), [Cu2(LMe,Me,Et)2]·CH2Cl2 (2), [Cu2(L i-Pr,i-Pr,i-Pr)2]·2H2O (3), [Cu2(L t-Bu,Me,i-Pr)2] (4), and [Cu2(L t-Bu,t-Bu,i-Pr)2]·H2O (5) have been synthesized and characterized by single-crystal X-ray diffraction analyses, magnetic studies, and density functional theory (DFT) calculations, in which the ligands [H2LMe,Me,Me = N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N',N'-dimethylethylene-1,2-diamine, H2LMe,Me,Et = N,N-bis(2-hydroxy-3,5-dimethylbenzyl)-N',N'-dimethylethylene-1,2-diamine, H2L i-Pr,i-Pr,i-Pr = N,N-bis(2-hydroxy-3,5-diisopropylbenzyl)-N',N'-diisopropylethylene-1,2-diamine, H2L t-Bu,Me,i-Pr = N,N-bis(2-hydroxy-3-tert-butyl-5-methylbenzyl)-N',N'-diisopropylethylene-1,2-diamine, and H2L t-Bu,t-Bu,i-Pr = N,N-bis(2-hydroxy-3,5-di-tert-butylbenzyl)-N',N'-diisopropylethylene-1,2-diamine] contain the same [O,N,N,O]-donor atoms combination but differ in substituents at phenol rings and at an amino nitrogen atom. The effect of these remote substituents on the nature of exchange coupling interactions (ferromagnetic vs antiferromagnetic) between the copper(II) ions has been investigated. The average Cu-O-Cu angle, Cu-O-Cu-O torsion angle, and Cu···Cu separation in 1-5 are varied systematically by these remote ligand substituents in the range 98.6-83.3°, 26.0-46.5°, and 2.982-2.633 Å, respectively. As a result, the intramolecular spin-spin coupling in these complexes are changing gradually from a strong antiferromagnetic (J = -395 cm-1, where H = -JS 1 S 2) to a moderate ferromagnetic (J = +53.2 cm-1) regime. The crossover angle at which the magnetic interaction changes from antiferromagnetic to ferromagnetic (J = 0) is determined to be ca. 87° for this series of dicopper(II) complexes. DFT calculations support the experimentally determined crossover angle and disclose various magneto-structural correlations in the series 1-5.

15.
J Am Chem Soc ; 141(20): 8346-8357, 2019 May 22.
Article in English | MEDLINE | ID: mdl-31017428

ABSTRACT

Phase control in the self-assembly of metal-organic frameworks (MOFs) is often a case of trial and error; judicious control over a number of synthetic variables is required to select the desired topology and control features such as interpenetration and defectivity. Herein, we present a comprehensive investigation of self-assembly in the Fe-biphenyl-4,4'-dicarboxylate system, demonstrating that coordination modulation can reliably tune between the kinetic product, noninterpenetrated MIL-88D(Fe), and the thermodynamic product, two-fold interpenetrated MIL-126(Fe). Density functional theory simulations reveal that correlated disorder of the terminal anions on the metal clusters results in hydrogen bonding between adjacent nets in the interpenetrated phase and this is the thermodynamic driving force for its formation. Coordination modulation slows self-assembly and therefore selects the thermodynamic product MIL-126(Fe), while offering fine control over defectivity, inducing mesoporosity, but electron microscopy shows MIL-88D(Fe) persists in many samples despite not being evident by diffraction. Interpenetration control is also demonstrated using the 2,2'-bipyridine-5,5'-dicarboxylate linker; it is energetically prohibitive for it to adopt the twisted conformation required to form the interpenetrated phase, although multiple alternative phases are identified due to additional coordination of Fe cations to its N donors. Finally, we introduce oxidation modulation-the use of metal precursors in different oxidation states from that found in the final MOF-to kinetically control self-assembly. Combining coordination and oxidation modulation allows the synthesis of pristine MIL-126(Fe) with BET surface areas close to the predicted maximum for the first time, suggesting that combining the two may be a powerful methodology for the controlled self-assembly of high-valent MOFs.

16.
Dalton Trans ; 48(10): 3338-3348, 2019 Mar 05.
Article in English | MEDLINE | ID: mdl-30778457

ABSTRACT

Complexes of divalent ytterbium (1) and europium (2) with a dianionic o-amidophenolate ligand were prepared by both the direct reduction of 4,6-di-tert-butyl-N-(2,6-diisopropylphenyl)-o-iminobenzoquinone (dpp-IQ) and the salt metathesis reaction of potassium o-amidophenolate with LnI2 (Ln = Yb, Eu). Oxidation of o-amidophenolates 1, 2 with one equivalent of dpp-IQ as well as the salt metathesis reaction of potassium o-iminosemiquinolate with LnI2 afforded ligand mixed-valent o-iminosemiquinonato-amidophenolato complexes of trivalent ytterbium (3) and europium (4). All novel complexes 1-4 were fully characterized, including the solid state structures of 1 and 2 determined by single crystal X-ray diffraction. The magnetic properties of paramagnetic 2-4 were examined.

17.
Inorg Chem ; 57(3): 1004-1016, 2018 Feb 05.
Article in English | MEDLINE | ID: mdl-29363952

ABSTRACT

Bis-bidentate ligand H4LB featuring two o-amidophenol noninnocent units was used to synthesize novel binuclear complexes [(LR)MIII(•LB•)MIII(LR)](ClO4)2, M = Fe (1) and Co (2, 3), with HLR (R = CH3, Cl) being the facially coordinating tetradentate coligands. Upon the synthesis, the fully reduced amidophenolate form of the ligand (LB)4- becomes oxidized, resulting in the formation of a rare example of a biradical (•LB•)2- bridge connecting two metal ions, as supported by X-ray crystallography. The electronic structures of the complexes have been probed by Mössbauer spectroscopy, magnetic susceptibility measurements, and electron paramagnetic resonance (EPR) spectroscopy. Species 1 contains two high-spin Fe(III) ions (S = 5/2) each coupled strongly antiferromagnetically (|J| > 150 cm-1; H = -2JS1S2) with a semiquinone π-radical (S = 1/2) form of the bridging (•LB•)2- ligand. The effective S = 2 spins of each [Fe(III)+R●] monomeric unit are then weakly ferromagnetically coupled with J = +0.22 cm-1. Species 2 and 3 reveal very similar electronic structures: the low-spin Co(III) ion is diamagnetic, which leaves the two-spin carriers at the bridging (•LB•)2- biradical to display an isotropic EPR signal at g = 1.995 for 2 (1.993 for 3) in solution at room temperature and in the frozen state with no hyperfine structure. The weak half-field signal at g = 3.988 for 2 (3.978 for 3) was also observed at 17 K for the spin-forbidden |ΔMS| = 2 transition due to ferromagnetically coupled S = 1/2 spins (J = +47 cm-1) of the bridging biradical. The compounds show rich electrochemistry, displaying two (1) or four (2, 3) one-electron reversible processes. Normal and differential pulse voltammetry as well as constant potential coulometry, combined with EPR experiments, confirmed that the observed electron transfers are all localized at the bridging noninnocent (•LB•)2- ligand.

18.
Inorg Chem ; 56(21): 13174-13186, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29028322

ABSTRACT

Spin-crossover molecular switches [FeII(H2B(pz)2)2L] (L = novel phenanthroline-based ligands featuring photochromic diarylethene units; pz = 1-pyrazolyl) were synthesized and thoroughly characterized by variable-temperature X-ray crystallography, Mössbauer spectroscopy, and magnetic measurements. The effect of substituents introduced into the phenanthroline backbone (L2) and into the photochromic diarylethene unit (L3) on photophysical properties of metal-free ligands and spin-crossover iron(II) complexes 2 and 3, respectively, were investigated in detail. Both ligands and complexes could be switched with light in solution at room temperature. The photocyclization of 2 was accompanied by a high-spin to low-spin photoconversion determined at 19%. The closed-ring isomers of L3 and 3 reveal the lifetimes in the range of minutes, whereas those of L2 and 2 are thermally stable for days in solutions at room temperature. The reversibility of the photoswitching can be improved by avoiding the photostationary states. Prospective introduction of anchoring groups to the phenanthroline backbone might allow the construction of chemisorbed self-assembled monolayers of spin-crossover species switchable with light at room temperature.

19.
Chemistry ; 23(6): 1278-1290, 2017 Jan 26.
Article in English | MEDLINE | ID: mdl-27783442

ABSTRACT

The first lanthanide complexes with a redox-active sulfur diimide ligand, [LnCp*2 (Me3 SiN=)2 S] (Ln=Sm, Eu, Yb; Cp*=η5 -C5 Me5 ), are reported. The complexes were synthesized by using [LnCp*2 (THF)2 ] and (Me3 SiN=)2 S and have been thoroughly characterized by single-crystal X-ray diffraction, EPR spectroscopy, UV/Vis/NIR electronic absorption spectroscopy and SQUID magnetometry. The results, as interpreted by CASSCF/SOC-RASSI calculations providing a non-perturbative treatment of spin-orbit coupling, indicate that these paramagnetic complexes are best described as Ln3+ and [(Me3 SiN=)2 S]-. adducts. As such, these complexes contain the first isolated and structurally characterized acyclic [(RN=)2 S]-. radical anions.

20.
Chemistry ; 22(43): 15178-15191, 2016 Oct 17.
Article in English | MEDLINE | ID: mdl-27529311

ABSTRACT

Spin-crossover metal complexes represent a highly promising class of molecular switches, the diverse physicochemical properties of which can be reversibly changed by different physical and chemical stimuli. One of the most interesting and examined features of these materials is the change of magnetic properties by changing the temperature or by irradiation with light at low temperatures. However, most prospective applications of such complexes require functioning at room temperature. This Concept article provides an overview about how the switching of spin-crossover metal complexes can be achieved at constant room temperature. The principles of switching by different physical and chemical methods in solution and in the solid state are presented in an easy-to-read form for nonspecialists. These are further supported and clarified by examples from the literature. The overview might also be interesting for experts that target spin-crossover systems functioning at ambient conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...