Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 59
Filter
1.
Vet Sci ; 10(9)2023 Sep 04.
Article in English | MEDLINE | ID: mdl-37756078

ABSTRACT

The aim of the present study was to evaluate the effects of marine microalgae (Dunaliella salina) as a food additive on biogas (BG), methane (CH4), carbon monoxide (CO), and hydrogen sulfide (H2S) production kinetics, as well as in in vitro rumen fermentation and the CH4 conversion efficiency of different genotypes of maize (Zea mays L.) and states of forage. The treatments were characterized by the forage of five maize genotypes (Amarillo, Montesa, Olotillo, Tampiqueño, and Tuxpeño), two states of forage (fresh and ensiled), and the addition of 3% (on DM basis) of microalgae (with and without). The parameters (b = asymptotic production, c = production rate, and Lag = delay phase before gas production) of the production of BG, CH4, CO, and H2S showed an effect (p < 0.05) of the genotype, the state of the forage, the addition of the microalgae, or some of its interactions, except for the time in the CO delay phase (p > 0.05). Moreover, the addition of microalgae decreased (p < 0.05) the production of BG, CH4, and H2S in most of the genotypes and stages of the forage, but the production of CO increased (p < 0.05). In the case of fermentation characteristics, the microalgae increased (p < 0.05) the pH, DMD, SCFA, and ME in most genotypes and forage states. With the addition of the microalgae, the fresh forage from Olotillo obtained the highest pH (p < 0.05), and the ensiled from Amarillo, the highest (p < 0.05) DMD, SCFA, and ME. However, the ensiled forage produced more (p < 0.05) CH4 per unit of SFCA, ME, and OM, and the microalgae increased it (p < 0.05) even more, and the fresh forage from Amarillo presented the highest (p < 0.05) quantity of CH4 per unit of product. In conclusion, the D. salina microalga showed a potential to reduce the production of BG, CH4, and H2S in maize forage, but its effect depended on the chemical composition of the genotype and the state of the forage. Despite the above, the energy value of the forage (fresh and ensiled) improved, the DMD increased, and in some cases, SCFA and ME also increased, all without compromising CH4 conversion efficiency.

3.
Article in English | MEDLINE | ID: mdl-37143509

ABSTRACT

The oxadiazole ring has long been used for the treatment of several diseases. This study aimed to analyze the antihyperglycemic and antioxidant roles of the 1,3,4-oxadiazole derivative with its toxicity. Diabetes was induced through intraperitoneal administration of alloxan monohydrate at 150 mg/kg in rats. Glimepiride and acarbose were used as standards. Rats were divided into groups of normal control, disease control, standard, and diabetic rats (treated with 5, 10, and 15 mg/kg of 1,3,4-oxadiazole derivative). After 14 days of oral administration of 1,3,4-oxadiazole derivatives (5, 10, and 15 mg/kg) to the diabetic group, the blood glucose level, body weight, glycated hemoglobin (HbA1c), insulin level, antioxidant effect, and histopathology of the pancreas were performed. The toxicity was measured by estimating liver enzyme, renal function, lipid profile, antioxidative effect, and liver and kidney histopathological study. The blood glucose and body weight were measured before and after treatment. Alloxan significantly increased blood glucose levels, HbA1c, alanine transaminase, aspartate aminotransferase, urea, cholesterol, triglycerides, and creatinine. In contrast, body weight, insulin level, and antioxidant factors were reduced compared to the normal control group. Treatment with oxadiazole derivatives showed a significant reduction in blood glucose levels, HbA1c, alanine transaminase, aspartate aminotransferase, urea, cholesterol, triglycerides, and creatinine as compared to the disease control group. The 1,3,4-oxadiazole derivative significantly improved body weight, insulin level, and antioxidant factors compared to the disease control group. In conclusion, the oxadiazole derivative showed potential antidiabetic activity and indicated its potential as a therapeutic.

5.
Pak J Pharm Sci ; 35(5): 1287-1294, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36451555

ABSTRACT

Aristolochia bracteolatais utilized in confronting multiple and complicated disease conditions such as cancer, lung inflammation, dysentery, syphilis, gonorrhea, arthritis, skindiseases, snake bite and oxidative stress relating to humans due to their acceptability, affordability and proximity. This investigation seeks to determine the antioxidant and anti-diabetic effects of methanol extract of A. bracteolate root bark in vitro. The phytochemical screening, antioxidant, and enzymes inhibitory (alpha-amylase and alpha-glucosidase) properties of root bark extract were evaluated by standard procedures. The methanol extract indicated the presence of diverse phytochemicals (tannins, saponins, flavonoids, alkaloids, phenols, glycosides and terpenoids) and contained a remarkable amount of saponins (8.20±0.03%), phenols (6.82±0.01%), alkaloids (4.71±0.03%) and flavonoids (3.50±0.12%). The extract showed not only strong antioxidant properties against DPPH, FRAP and TBARS radicals with IC50 value of 57.87, 54.64 and 47.54 mg/ml, respectively but also anti-diabetic activity by inhibiting alpha-amylase (IC50=53.70 mg/ml) and alpha-glucosidase (IC50=49.18 mg/ml). GC-MS chromatogram identified a diverse array of active metabolites in the methanol extract of A. bracteolate root bark. This study suggested that the methanol extract of A. bracteolate root bark possessed anti-oxidative and anti-diabetic activities.


Subject(s)
Aristolochia , Saponins , Humans , Methanol , Antioxidants/pharmacology , Gas Chromatography-Mass Spectrometry , alpha-Glucosidases , Plant Bark , Phenols , Flavonoids/pharmacology , alpha-Amylases , Amylases , Plant Extracts/pharmacology
6.
Pathogens ; 11(9)2022 Sep 05.
Article in English | MEDLINE | ID: mdl-36145447

ABSTRACT

The formation of a protective biofilm by Pseudomonas aeruginosa (PA) is one of the hallmarks of their survival both in vivo and in harsh environmental conditions, thus, biofilm-eradication has relevance from therapeutic perspectives and for infection control. The aim of our study was to investigate the possible relationship between antibiotic resistance, biofilm-forming capacity and virulence factors in n = 166 PA isolates of environmental origin. Antimicrobial susceptibility testing and the phenotypic detection of resistance determinants were carried out using standard protocols. The biofilm-forming capacity of PA was tested using a standardized crystal violet microtiter plate-based method. Motility (swimming, swarming, and twitching) and siderophore production of the isolates were also assessed. Resistance rates were highest for ciprofloxacin (46.98%), levofloxacin (45.18%), ceftazidime (31.92%) and cefepime (30.12%); 19.28% of isolates met the criteria to be classified as multidrug-resistant (MDR). Efflux pump overexpression, AmpC overexpression, and modified Hodge-test positivity were noted in 28.31%, 18.07% and 3.61%, respectively. 22.89% of isolates were weak/non-biofilm producers, while 27.71% and 49.40% were moderate and strong biofilm producers, respectively. Based on MDR status of the isolates, no significant differences in biofilm-production were shown among environmental PA (non-MDR OD570 [mean ± SD]: 0.416 ± 0.167 vs. MDR OD570: 0.399 ± 0.192; p > 0.05). No significant association was observed between either motility types in the context of drug resistance or biofilm-forming capacity (p > 0.05). 83.13% of isolates tested were positive for siderophore production. The importance of PA as a pathogen in chronic and healthcare-associated infections has been described extensively, while there is increasing awareness of PA as an environmental agent in agriculture and aquaculture. Additional studies in this field would be an important undertaking to understand the interrelated nature of biofilm production and antimicrobial resistance, as these insights may become relevant bases for developing novel therapeutics and eradication strategies against PA.

7.
Chemosphere ; 307(Pt 3): 136020, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35985383

ABSTRACT

Neurodegenerative diseases (NDDs) are conditions that cause neuron structure and/or function to deteriorate over time. Genetic alterations may be responsible for several NDDs. However, a multitude of physiological systems can trigger neurodegeneration. Several NDDs, such as Huntington's, Parkinson's, and Alzheimer's, are assigned to oxidative stress (OS). Low concentrations of reactive oxygen and nitrogen species are crucial for maintaining normal brain activities, as their increasing concentrations can promote neural apoptosis. OS-mediated neurodegeneration has been linked to several factors, including notable dysfunction of mitochondria, excitotoxicity, and Ca2+ stress. However, synthetic drugs are commonly utilized to treat most NDDs, and these treatments have been known to have side effects during treatment. According to providing empirical evidence, studies have discovered many occurring natural components in plants used to treat NDDs. Polyphenols are often safer and have lesser side effects. As, epigallocatechin-3-gallate, resveratrol, curcumin, quercetin, celastrol, berberine, genistein, and luteolin have p-values less than 0.05, so they are typically considered to be statistically significant. These polyphenols could be a choice of interest as therapeutics for NDDs. This review highlighted to discusses the putative effectiveness of polyphenols against the most prevalent NDDs.


Subject(s)
Berberine , Curcumin , Neurodegenerative Diseases , Synthetic Drugs , Curcumin/therapeutic use , Genistein , Humans , Luteolin/therapeutic use , Neurodegenerative Diseases/drug therapy , Nitrogen , Oxygen , Polyphenols/pharmacology , Polyphenols/therapeutic use , Quercetin , Resveratrol , Synthetic Drugs/therapeutic use
8.
Cell Mol Biol (Noisy-le-grand) ; 67(4): 33-41, 2022 Jan 02.
Article in English | MEDLINE | ID: mdl-35809304

ABSTRACT

Excessive use of refined flour, solid fats, and sugar in preparing baked products are considered to be unhealthy and is intricately linked with the development of lifestyle diseases. Replacing refined flour with whole wheat flour and solid fats with cold-pressed oil serves as an alternate option. The study was aimed at evaluating the physicochemical properties, nutrient composition, sensory attributes, and shelf life of cupcakes enriched using pomegranate seed oil (PSO). Vanilla and chocolate cupcake variants were prepared using 25 and 50% of PSO. A sensory panel consisting of 30 semi-trained participants was selected for evaluating the formulated products using a five-point hedonic scale. Nutrient content was estimated using standard techniques. The stability of the formulated product was determined by evaluating the physicochemical traits and microbial growth on the 0th, 4th, and 7th day. Mean scores of the sensorial analysis showed that the incorporation of PSO in cupcakes was highly accepted by the panel members. Chocolate cupcake containing 50% of PSO was found to be the most preferred product (3.53±0.94), followed by vanilla cupcake containing 25% of PSO (3.4±0.62). The moisture, protein, and fat content of chocolate cupcakes containing 25% of PSO were high. Cupcakes prepared with PSO can be stored for four days at room temperature. GC-MS analysis showed the presence of punicic acid, oleic acid, tocopherols, campesterol, sitosterols, stigmasterol, and α-tocopheryl acetate as pre-dominant fatty acid in unheated and heated PSO. In conclusion, cupcakes prepared using PSO showed acceptable physicochemical qualities and sensory properties which indicated its successful consumption by people affected with metabolic disorders.


Subject(s)
Food Analysis , Food Quality , Plant Oils , Pomegranate , Fatty Acids/analysis , Fatty Acids/chemistry , Food Microbiology , Humans , Plant Oils/chemistry , Pomegranate/chemistry , Seeds , Sweetening Agents , Young Adult
9.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 439-450, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35818224

ABSTRACT

Laccase producing fungus Pleurotus floridanus was isolated from Siruvani forest, Tamil Nadu, India. The potential of P. floridanus to produce laccase by using various lignocellulosic substrates was screened under submerged fermentation. Laccase production in the presence of lignocellulosic substrates such as rice, wheat and maize bran as a sole source of carbon as well as an additional supplement was examined. Laccase activity of P. floridanus using varied substrates was observed in the order of rice bran > wheat bran > maize bran. The isolate showed maximum laccase activity of 13.29±0.01 U/mL using rice bran as a carbon source within 11 days. This was 18 fold higher than the control media that lacks lignocellulosic substrates. The diclofenac tolerance was assessed in solid media at various concentrations and the results showed that the mycelia growth is not significantly affected by the drug. Finally, the laccase mediated degradation of diclofenac at a concentration of 10 mg/L showed 98% degradation in 2 h. The phytotoxicity of the crude laccase treated diclofenac was lower than the untreated diclofenac. In conclusion, findings suggested direct application of crude laccase produced from P. floridanus using agro-residues as ideal substrate for environmental applications.


Subject(s)
Laccase , Pleurotus , Biotransformation , Carbon , Diclofenac/toxicity , India , Laccase/metabolism , Pleurotus/metabolism
10.
Cell Mol Biol (Noisy-le-grand) ; 67(5): 151-156, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35818258

ABSTRACT

Antibiotic resistance in pathogenic bacteria to various types of antibiotics has resulted in the necessity of new effective strategies to get around this problem. In recent investigations, metal or metal oxide nanoparticles specifically silver nanoparticles (AgNPs) have been employed successfully to hinder antibiotic-resistant Gram-negative and Gram-positive bacteria. However, AgNPs at high concentrations have cytotoxicity for eukaryotic cells which, application of other biocompatible materials particularly plant secondary metabolites of curcumin and quercetin to reduce cytotoxicity is a critical affair. These compounds may be used directly or indirectly to produce AgNPs. In this regard, modified NPs by curcumin and quercetin have shown an increased therapeutic effect and biocompatibility and biodegredibility properties. Therefore, here, recent advances and challenges about antibacterial and biocompatibility properties of nanoformulation of AgNPs with curcumin and quercetin are presented.


Subject(s)
Curcumin , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Bacteria , Curcumin/pharmacology , Microbial Sensitivity Tests , Quercetin/pharmacology , Silver/pharmacology
11.
Article in English | MEDLINE | ID: mdl-35388307

ABSTRACT

Neurodegenerative diseases, especially Alzheimer's disease (AD), are characterised with neuronal synapse and memory dysfunction, and thus, there is an urgent need to find novel therapeutic medicines that can target different pathways to restore the deficits. In this investigation, we assessed the medicinal potency of folecitin (a flavonoid isolated from Hypericum oblongifolium Wall.) against lipopolysaccharide (LPS)-induced amyloidogenic amyloid beta (Aß) production pathway-mediated memory impairment in mice. The LPS was administered intraperitonially (i.p.) 250 µg/kg/day for 3 consecutive weeks, followed by the coadministration of folecitin (30 mg/kg/day) with LPS for the last two weeks (2nd and 3rd week). The expression of various proteins involved in synapse, neuronal death, and Aß generation was evaluated using the Western blot approach. Results indicated that folecitin significantly decreased LPS-induced apoptotic proteins; expressed BAX, PARP-1, and caspase-3 proteins; and inhibited BACE1 that cleaves transmembrane amyloid precursor protein and the amyloidogenic Aß production pathway. Folecitin restored both preneural and postneuronal synapse, accompanied by the improvement in memory impairment. Moreover, folecitin significantly activated endogenous antioxidant proteins Nrf-2 and HO-1 by stimulating the phosphorylation of Akt proteins. These findings indicate that folecitin might be a promising target for developing novel medication to treat neurodegenerative disorders caused by neurotoxins.

12.
Food Chem Toxicol ; 164: 112996, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35398443

ABSTRACT

Environment contamination is a colossal worriment across the world, owing to its detrimental and negative impact on health and ecological systems. Dyes are one of the synthetic organic chemicals that are utilised in a variety of fields, including textiles. As a result, throughout one's production and subsequently in fibre colouring, these are becoming frequent industry-contributed contaminants. Increasing globalisation of international market has presented a problem to textile sector in terms of consistency and production. Textile processors' primary concern, as the highly competitive environment and environmental standards grow more severe is about being mindful of the grade of goods and even non-toxicity of their production processes. There seems to be an immediate necessity to look for methods and technologies which are useful in removing dye colours. Even though each has benefits and weaknesses, many physical, chemical, and biological approaches were explored and used with the application being dependent on the effluent properties, technical feasibility, and cost. Several remediation technologies are already developed, but they seem to be ineffective at removing dyes completely. There is a fast growth of nanoparticles applications in the past few years which has opened up newer, innovating, highly efficient, and low-cost dyes remediation systems. Nanomaterials with large surface areas change surface characteristics and distinctive electron conducting capabilities which make them ideal candidate for the treatment of wastewater that contains dyes. In this review, we have highlighted not only the role of nanotechnology in dye remediation processes but also different types of nanomaterials that can be used for the remediation of dyes.


Subject(s)
Coloring Agents , Textile Industry , Biodegradation, Environmental , Coloring Agents/chemistry , Coloring Agents/toxicity , Textiles , Wastewater
13.
Food Microbiol ; 105: 104028, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35473981

ABSTRACT

Coagulase-negative staphylococci (CNS) are one of the most pervasive heterogeneous groups of bacteria which are used as starter/adjunct cultures to enhance the aroma and texture of fermented foods. The organoleptic characteristics of fermented foods rely on disparate metabolic attributes of CNS. Nitrate reductase production from CNS improves sensory characteristics of foods by converting nitrate into nitrite. These bacteria utilize arginine via arginine deiminase pathway in the cytosol, and thus, play effective role in the generation of colour of fermented foods. Coagulase-negative Staphylococcus spp. develop flavour in foods by fermenting carbohydrates, converting amino acids, inducing ß-oxidation of lipids, and secreting esterases. Additionally, the characteristic flavour of foods depends on the proteolytic and lipolytic properties of CNS strains too. Coagulase-negative staphylococci strains have revealed exemplary functional or probiotic traits by showing tolerance to acidic pH and bile, depicting adhesion characteristics, producing exopolysaccharide, and secreting therapeutic bacteriocins. Unfortunately, some CNS strains have shown antibiotics resistance, enterotoxins secretions, biogenic amine productions, haemolytic activities, and biofilm formations, thereby indicated the utilization of CNS on strain-by-strain basis. This review sheds light not only on the metabolic heterogeneity and techno-functional traits but also the safety and pathogenic aspects of fermented foods-associated CNS strains.


Subject(s)
Coagulase , Fermented Foods , Coagulase/metabolism , Fermentation , Food Microbiology , Staphylococcus/metabolism
14.
J Equine Vet Sci ; 113: 103938, 2022 06.
Article in English | MEDLINE | ID: mdl-35346771

ABSTRACT

Greenhouse gases emission from livestock is the major concern for the ecosystem. Despite the lower contribution of non-ruminants towards greenhouse gas emission as compared to the ruminants, the emission of methane (CH4) gas from equines is expected to be increased in future due to its increasing population. Thus, it is essential to find or screen potential anti-methanogenic agent in a cost-effective and quicker manner. Considering this, the present investigation was aimed to analyze anti-methanogenic characteristic of bioactive compounds of safflower oil by targeting methanogenesis catalyzing enzyme (Methyl-coenzyme M reductase; MCR) via in silico tool. Initially, a total of 25 compounds associated with safflower oil were selected and their drug-likeness traits were predicted through Lipinski's rule of 5. Of 25 compounds, 9 compounds passed all the parameters of Lipinski's rule of five. These 9 ligands were further submitted for ADME traits analysis using Swiss ADME tool. Results revealed the absence of Lipinski's violation and approval of drug-likeness attributes of methyl tetradecanoate, 3-isopropyl-6-methylenecyclohex-1-ene, trans-2,4-decadienal, cis-6-nonenal, limonene, syringic acids, matairesinol, acacetin, and 2,5-octanedione. Molecular docking analysis was performed for analyzing the affinity between the selected 9 ligands and MCR receptor using FRED v3.2.0 from OpenEye Scientific Software and Discovery Studio client v16.1.0. Results showed maximum binding interaction of acacetin with MCR with the chemguass4 score of -13.35. Other ligands showed comparatively lower binding affinity in the order of matairesinol (-12.43) > methyl tetradecanoate (-9.25) > cis-6-nonenal (-7.88) > syringic acids (-7.73) > limonene (-7.18) > trans-2,4-decadienal (-7.07) > 3-isopropyl-6-methylenecyclohex-1-ene (-7.01) > 2,5-octanedione (-7.0.). In a nutshell, these identified compounds were observed as potential agents to reduce CH4 production from equines by targeting MCR. This in silico study emphasized the role of safflower-associated compounds in developing anti-methanogenic drug for equines in future.


Subject(s)
Euryarchaeota , Greenhouse Gases , Animals , Ecosystem , Euryarchaeota/metabolism , Greenhouse Gases/metabolism , Horses , Ligands , Limonene/metabolism , Molecular Docking Simulation , Oxidoreductases , Safflower Oil/metabolism
15.
Saudi J Biol Sci ; 29(3): 1887-1892, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35280571

ABSTRACT

This study was aimed to determine the neuroprotective influence of Stellaria media in terms of restoring normal state of the rat's hippocampus and cortex after oxidative insult caused by in vitro ischemia and reperfusion. Cell viability and membrane integrity were assessed using MTT and lactate dehydrogenase (LDH) assay, respectively. Ischemic insult was introduced in the rat brain's hippocampal and cortical slivers by exposing oxygen and glucose deficiency (OGD) for 2 h, followed by 1 h of re-perfusion. Cellular oxidative stress levels were quantified by incorporating 2',7'-dichlorofluorescein diacetate fluorescent probes. Additionally, the lipid peroxidation was assessed using TBARS assay. Findings revealed significant neuroprotection against OGD-induced mitochondrial impairment at 40 µg/mL of S. media in rat's hippocampal and cortical slices. The LDH levels were decreased significantly (P < 0.001) during pre-incubation and reoxygenation periods using varied concentrations of S. media extract. Cellular oxidative stress levels results showed significant (P < 0.001) reduction in dichlorofluorescein fluorescence in slices homogenate of hippocampus and cortex using S. media extract. The lipid peroxidation assay results showed decreased (P < 0.01) levels of malondialdehyde in liver tissues of treated rats treated (200 mg/kg body weight) when compared to the ischemic animal. In summary, findings clearly indicated the neuroprotective effects of extract against in vitro ischemia in brain hippocampal and cortex slivers. S. media could undoubtedly be utilized as a healing agent in preventing neuronal cells' loss during is chemic-reperfusion process.

16.
J Equine Vet Sci ; 110: 103863, 2022 03.
Article in English | MEDLINE | ID: mdl-35017039

ABSTRACT

Oxidative stress is the excess generation of free radicals and/or a decrease in the response of the antioxidant system. It is known to cause damage to the equine health by unbalancing the stable molecules. The dietary supplementation of vitamins E, C, and ß-carotene cause beneficial effect on horses' health. These supplements could transform free radicals into the stable radicals, thereby showing importance in the prevention of diseases associated with oxidative stress. Adding vitamins E, C, and ß-carotene to the horses' diets in stressful conditions could decrease the production of free radicals that cause inflammation and tissue damage, the typical characteristics that have been associated with oxidative stress. This review spotlights the available evidence of the benefits of dietary supplements of vitamins E, C, and ß-carotene towards the reduction of oxidative stress in horses.


Subject(s)
Vitamin E , beta Carotene , Animals , Ascorbic Acid , Dietary Supplements , Horses , Oxidative Stress , Vitamin E/pharmacology , Vitamins/pharmacology , beta Carotene/pharmacology
17.
Article in English | MEDLINE | ID: mdl-35087593

ABSTRACT

As Allium cepa is one of the most important condiment plants grown and consumed all over the world, various therapeutic and pharmacological effects of A. cepa were reviewed. Onion (Allium cepa) is a high dietary fiber-rich perennial herb that is placed under the family Amaryllidaceae. It contains high concentration of folic acid, vitamin B6, magnesium, calcium, potassium, and phosphorus as well as vitamins and minerals. It is widely used as an antimicrobial agent, but it showed anticancer, antidiabetic, antioxidant, antiplatelet, antihypertensive, and antidepressant effects and neuroprotective, anti-inflammatory, and antiparasitic effects and so on. It is said to have beneficial effects on the digestive, circulatory, and respiratory systems, as well as on the immune system. This review article was devoted to discussing many health benefits and traditional uses of onions in pharmacological perspectives, as well as the safety/toxicological profile. If more detailed research on this perennial herb is conducted, it will open the door to an infinite number of possibilities.

18.
Anim Biotechnol ; 33(2): 369-391, 2022 Apr.
Article in English | MEDLINE | ID: mdl-32744150

ABSTRACT

Medicinal plants exhibit colossal impact on poultry industries by improving its performance and productivity. However, some of these plants show adverse influence too by decreasing egg production percentage, egg mass, and microbiota counts. Green tea, nettle, pennyroyal, yarrow, and alfalfa in the form of seed, powder, and extract had vast potentiality to improve immunity, reduce the growth of pathogenic microbes, and improve the viable counts of lactic acid bacteria. Lavender, Alfalfa, and Nettle powder were able to improve egg yolk color. Furthermore, ginger reduced fat content in meat and increased color intensity. Flax seed increased alpha linolenic acid content in tissue, and increased n-3 fatty acid content in breast as well as thigh tissue. Physiological assessment showed that green tea, lavender, nettle, pennyroyal, and yarrow improved poultry immunity. Lavender and nettle improved internal organ traits. Interestingly, the use of flaxseed improved quail egg hatchability. Plants metabolites, particularly carvacrol and thymol showed its pivotal role as natural growth promoters by affecting growth performances, nutrient bioavailability, and immunity of broiler chickens. Additionally, in recent years, micro-encapsulation or nano-encapsulation of plant extracts and its metabolites improved growth performances of broiler chickens, thereby suggested wide utilization of this technique as a potential alternative to antibiotic growth promoters in future. This review sheds a light on beneficial as well as no adverse effects of some of the direct-fed important medicinal plants and its metabolites in poultry nutrition in order to suggest its key role in future poultry enterprise.


Subject(s)
Chickens , Plants, Medicinal , Animal Feed/analysis , Animals , Chickens/metabolism , Diet/veterinary , Dietary Supplements , Poultry
19.
Front Psychiatry ; 12: 730388, 2021.
Article in English | MEDLINE | ID: mdl-34925083

ABSTRACT

Cannabis abuse is a common public health issue and may lead to considerable adverse effects. Along with other effects, the dependence on cannabis consumption is a serious problem which has significant consequences on biochemical and clinical symptoms. This study intends to evaluate the harmful effects of the use of cannabis on thyroid hormonal levels, cardiovascular indicators, and psychotic symptoms in the included patients. This prospective multicenter study was conducted on cannabis-dependent patients with psychotic symptoms (n = 40) vs. healthy control subjects (n = 40). All participants were evaluated for psychiatric, biochemical, and cardiovascular physiological effects. Patients were selected through Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV criteria and urine samples, exclusively for the evaluation of cannabis presence. Serum thyroid stimulating hormone (TSH), T3, and T4 levels were measured using the immunoassay technique. Patients were assessed for severity of depressive, schizophrenic, and manic symptoms using international ranking scales. Various quantifiable factors were also measured for the development of tolerance by cannabis. Among the patients of cannabis abuse, 47.5% were found with schizophrenia, 20% with schizoaffective symptoms, 10% with manic symptoms, and 22.5% with both manic and psychotic symptoms. In the group-group and within-group statistical analysis, the results of thyroid hormones and cardiovascular parameters were non-significant. The psychiatric assessment has shown highly significant (p < 0.001) difference of positive, negative, general psychopathology, and total scores [through Positive and Negative Syndrome Scale (PANSS) rating scales] in patients vs. the healthy control subjects. The study revealed that cannabis abuse did not significantly alter thyroid hormones and cardiovascular parameters due to the development of tolerance. However, the cannabis abuse might have a significant contributing role in the positive, negative, and manic symptoms in different psychiatric disorders.

20.
Cell Mol Biol (Noisy-le-grand) ; 67(3): 99-106, 2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34933727

ABSTRACT

Brain disorders such as Alzheimer's and Parkinson's disease (PD) are irreversible conditions with several cognitive problems, including learning disabilities, memory loss, movement abnormalities, and speech problems. These disorders are caused by a variety of factors, mainly due to the toxic pollutants-induced biochemical changes in protein production, uncontrolled neuronal electrical activity, and altered neurotransmitter levels. Oxidative stress and toxicity associated with the increased glutamate levels decreased acetylcholine levels, and brain inflammation is the main contributing factor. Melatonin hormone is considered one of the potent treatment approaches for neurodegenerative disorders. Melatonin is released from the pineal gland and has a critical role in brain function regulation. Membrane receptors, binding sites, and chemical interaction mediate hormonal actions having multiple phenotypic expressions. It acts as a neurodegenerative agent against some neurological disorders such as Alzheimer's disease (AD), PD, depression, and migraines. Melatonin inhibits neurotoxic pollutants-induced Tau protein hyperphosphorylation, especially in AD. Other pivotal features of melatonin are its anti-inflammatory properties, which decrease pro-inflammatory cytokines expression and factors such as IL-8, IL-6, and TNF. Melatonin also reduces NO (an inflammation factor). In this review, we have highlighted the protective effects of melatonin, mainly spotlighting its neuroprotective mechanisms that will be beneficial to assess their effects in environmental pollution-induced neurodegenerative pathology.


Subject(s)
Alzheimer Disease/prevention & control , Melatonin/therapeutic use , Neurodegenerative Diseases/prevention & control , Oxidative Stress/drug effects , Parkinson Disease/prevention & control , Alzheimer Disease/metabolism , Animals , Antioxidants/metabolism , Antioxidants/therapeutic use , Humans , Melatonin/metabolism , Neurodegenerative Diseases/metabolism , Neuroprotective Agents/metabolism , Neuroprotective Agents/therapeutic use , Parkinson Disease/metabolism , Phosphorylation/drug effects , Pineal Gland/metabolism , tau Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...