Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Gut Microbes ; 16(1): 2350778, 2024.
Article in English | MEDLINE | ID: mdl-38717446

ABSTRACT

Ethanolamine is an abundant compound in the gastrointestinal tract and a valuable source of carbon and nitrogen for pathogenic bacteria harboring ethanolamine utilization (eut) genes. Eut-positive pathogens can consume free ethanolamine to outcompete commensal microbes, which often lack eut genes, and establish infection. Ethanolamine can also act as a host recognition signal for eut-positive pathogens to upregulate virulence genes during colonization. Therefore, reducing free ethanolamine titers may represent a novel approach to preventing infection by eut-positive pathogens. Interestingly, the commensal microorganism Levilactobacillus brevis ATCC 14869 was found to encode over 18 eut genes within its genome. This led us to hypothesize that L. brevis can compete with eut-positive pathogens by clearing free ethanolamine from the environment. Our results demonstrate that despite being unable to metabolize ethanolamine under most conditions, L. brevis ATCC 14869 responds to the compound by increasing the expression of genes encoding proteins involved in microcompartment formation and adhesion to the intestinal epithelial barrier. The improved intestinal adhesion of L. brevis in the presence of ethanolamine also enhanced the exclusion of eut-positive pathogens from adhering to intestinal epithelial cells. These findings support further studies to test whether L. brevis ATCC 14869 can counter enteric pathogens and prevent or reduce the severity of infections. Overall, the metabolic capabilities of L. brevis ATCC 14869 offer a unique opportunity to add to the armamentarium of antimicrobial therapies as well as our understanding of the mechanisms used by beneficial microbes to sense and adapt to host microenvironments.


Subject(s)
Bacterial Adhesion , Ethanolamine , Gene Expression Regulation, Bacterial , Levilactobacillus brevis , Ethanolamine/metabolism , Bacterial Adhesion/drug effects , Levilactobacillus brevis/genetics , Levilactobacillus brevis/metabolism , Humans , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Gastrointestinal Microbiome , Animals , Virulence/genetics
2.
Mol Hum Reprod ; 29(7)2023 06 30.
Article in English | MEDLINE | ID: mdl-37326833

ABSTRACT

We have previously demonstrated spermicidal activity of LL-37 antimicrobial peptide on mouse/human sperm and its contraceptive effects in female mice. With its microbicidal action against Neisseria gonorrhoeae, LL-37 warrants development into a multipurpose prevention technology (MPT) agent for administering into the female reproductive tract (FRT). However, it is important to verify that multiple administrations of LL-37 do not lead to damage of FRT tissues and/or irreversible loss of fecundity. Herein, we transcervically injected LL-37 (36 µM-10× spermicidal dose) into female mice in estrus in three consecutive estrous cycles. A set of mice were sacrificed for histological assessment of the vagina/cervix/uterus 24 h after the last injection, while the second set were artificially inseminated with sperm from fertile males 1 week afterwards, and then monitored for pregnancy. Mice injected with PBS in parallel were regarded as negative controls, whereas those injected with vaginal contraceptive foam (VCF, available over the counter), containing 12.5% nonoxynol-9, served as positive controls for vaginal epithelium disruption. We demonstrated that the vagina/cervix/uterus remained normal in both LL-37-injected and PBS-injected mice, which also showed 100% resumption of fecundity. In contrast, VCF-injected mice showed histological abnormalities in the vagina/cervix/uterus and only 50% of them resumed fecundity. Similarly, LL-37 multiply administered intravaginally caused no damage to FRT tissues. While our results indicate the safety of multiple treatments of LL-37 in the mouse model, similar studies have to be conducted in non-human primates and then humans. Regardless, our study provides an experimental model for studying in vivo safety of other vaginal MPT/spermicide candidates.


Subject(s)
Antimicrobial Peptides , Spermatocidal Agents , Pregnancy , Male , Female , Humans , Mice , Animals , Semen , Spermatocidal Agents/pharmacology , Nonoxynol/pharmacology , Spermatozoa
3.
Urolithiasis ; 51(1): 19, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36547746

ABSTRACT

Kidney stone disease affects nearly one in ten individuals and places a significant economic strain on global healthcare systems. Despite the high frequency of stones within the population, effective preventative strategies are lacking and disease prevalence continues to rise. Osteopontin (OPN) is a urinary protein that can inhibit the formation of renal calculi in vitro. However, the efficacy of OPN in vivo has yet to be determined. Using an established Drosophila melanogaster model of calcium oxalate urolithiasis, we demonstrated that a 16-residue synthetic OPN phosphopeptide effectively reduced stone burden in vivo. Oral supplementation with this peptide altered crystal morphology of calcium oxalate monohydrate (COM) in a similar manner to previous in vitro studies, and the presence of the OPN phosphopeptide during COM formation and adhesion significantly reduced crystal attachment to mammalian kidney cells. Altogether, this study is the first to show that an OPN phosphopeptide can directly mitigate calcium oxalate urolithiasis formation in vivo by modulating crystal morphology. These findings suggest that OPN supplementation is a promising therapeutic approach and may be clinically useful in the management of urolithiasis in humans.


Subject(s)
Calcium Oxalate , Kidney Calculi , Osteopontin , Phosphopeptides , Animals , Calcium Oxalate/metabolism , Drosophila melanogaster , Kidney Calculi/drug therapy , Kidney Calculi/metabolism , Osteopontin/pharmacology , Osteopontin/therapeutic use , Phosphopeptides/pharmacology , Phosphopeptides/therapeutic use , Disease Models, Animal
4.
Hum Reprod ; 37(11): 2503-2517, 2022 10 31.
Article in English | MEDLINE | ID: mdl-36053257

ABSTRACT

STUDY QUESTION: Is 17BIPHE2, an engineered cathelicidin antimicrobial peptide with low susceptibility to proteases, a better spermicide in cervicovaginal fluid (CVF) than its parental peptides, LL-37 and GF-17? SUMMARY ANSWER: At the same mass concentration, 17BIPHE2 exhibited the highest spermicidal activity on human sperm resuspended in CVF-containing medium. WHAT IS KNOWN ALREADY: LL-37 and its truncated peptide GF-17 exert both spermicidal and microbicidal activities, although they are prone to proteolytic degradation in body fluids. STUDY DESIGN, SIZE, DURATION: Spermicidal activities of 17BIPHE2 were evaluated in vitro in mouse and human sperm, both resuspended in medium, and then on human sperm incubated in CVF-containing medium; in the latter condition, the spermicidal activity and peptide stability in CVF of 17BIPHE2 were compared with that of LL-37 and GF-17. The in vivo contraceptive effects of 17BIPHE2 and the reversibility thereof were then assessed in mice. Finally, in vitro microbicidal effects of 17BIPHE2 on Neisseria gonorrhoeae were determined. PARTICIPANTS/MATERIALS, SETTING, METHODS: Sperm motility and plasma membrane integrity were assessed by videomicroscopy and exclusion of Sytox Green, a membrane-impermeable fluorescent dye, respectively. Successful in vitro fertilization (IVF) was determined by the presence of two pronuclei in oocytes following their coincubation with capacitated untreated or 17BIPHE2-treated sperm. Sperm alone or with 17BIPHE2 were transcervically injected into female mice and successful in vivo fertilization was indicated by the formation of two-cell embryos 42-h postinjection, and by pregnancy through pup delivery 21-25 days afterwards. Peptide intactness was assessed by immunoblotting and HPLC. Reversibility of the contraceptive effects of 17BIPHE2 was evaluated by resumption of pregnancy of the female mice, pretranscervically injected with 17BIPHE2, following natural mating with fertile males. Minimum inhibitory/bactericidal concentrations of 17BIPHE2 on N. gonorrhoeae were obtained through microdilution broth assay. MAIN RESULTS AND THE ROLE OF CHANCE: At the same mass concentration, 17BIPHE2 was a more effective spermicide than LL-37 or GF-17 on human sperm resuspended in CVF-containing medium, with the spermicidal concentration of 32.4 µM. This was mainly due to lower susceptibility of 17BIPHE2 to CVF proteases. Importantly, the reproductive tract of mouse females treated three times with 32.4 µM 17BIPHE2 remained normal and their fecundity resumed after stopping 17BIPHE2 treatment. LIMITATIONS, REASONS FOR CAUTION: For ethical reasons, the inhibitory effects of 17BIPHE2 on fertilization and pregnancy cannot presently be performed in women. Also, while our study has proven the effectiveness of 17BIPHE2 as a spermicide for mouse and human sperm in vitro, dosage formulation (e.g. in hydrogel) of 17BIPHE2 still needs to be developed to allow 17BIPHE2 to remain in the vagina/uterine cavity with controlled release for its spermicidal action. WIDER IMPLICATIONS OF THE FINDINGS: Since 17BIPHE2 also exerted bactericidal activity against N. gonorrhoeae at its spermicidal concentration, it is a promising candidate to be developed into a vaginal multipurpose prevention technology agent, thus empowering women against unplanned pregnancies and sexually transmitted infections. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Canadian Institutes of Health Research (PJT 173268 to N.T.). There are no competing interests to declare. TRIAL REGISTRATION NUMBER: N/A.


Subject(s)
Anti-Infective Agents , Spermatocidal Agents , Pregnancy , Male , Female , Humans , Animals , Mice , Neisseria gonorrhoeae , Antimicrobial Peptides , Sperm Motility , Peptide Hydrolases/pharmacology , Semen , Canada , Spermatocidal Agents/pharmacology , Spermatozoa , Anti-Infective Agents/pharmacology , Contraceptive Agents , Cathelicidins
5.
Antioxidants (Basel) ; 10(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199863

ABSTRACT

Seminolipid (also known as sulfogalactosylglycerolipid-SGG), present selectively in male germ cells, plays important roles in spermatogenesis and sperm-egg interaction. The proper degradation of SGG in apoptotic germ cells is also as important. Sertoli cells first phagocytose apoptotic germ cells, then Sertoli lysosomal arylsulfatase A (ARSA) desulfates SGG, the first step of SGG degradation. We have reported that aging male Arsa-/- mice become subfertile with SGG accumulation in Sertoli cell lysosomes, typical of a lysosomal storage disorder (LSD). Since reactive oxygen species (ROS) levels are increased in other glycolipid-accumulated LSDs, we quantified ROS in Arsa-/- Sertoli cells. Our analyses indicated increases in superoxide and H2O2 in Arsa-/- Sertoli cells with elevated apoptosis rates, relative to WT counterparts. Excess H2O2 from Arsa-/- Sertoli cells could travel into testicular germ cells (TGCs) to induce ROS production. Our results indeed indicated higher superoxide levels in Arsa-/- TGCs, compared with WT TGCs. Increased ROS levels in Arsa-/- Sertoli cells and TGCs likely caused the decrease in spermatogenesis and increased the abnormal sperm population in aging Arsa-/- mice, including the 50% decrease in sperm SGG with egg binding ability. In summary, our study indicated that increased ROS production was the mechanism through which subfertility manifested following SGG accumulation in Sertoli cells.

6.
Am J Reprod Immunol ; 82(1): e13129, 2019 07.
Article in English | MEDLINE | ID: mdl-31066971

ABSTRACT

PROBLEM: Sperm are the major cells in semen. Human sperm possess a number of HIV-1 gp120 binding ligands including sulfogalactosylglycerolipid (SGG). However, the mechanisms of how sperm capture HIV-1 onto their surface are unclear. Furthermore, the ability of sperm to deliver HIV-1 to vaginal/cervical epithelial cells lining the lower female reproductive tract, as a first step in HIV-1 transmission, needs to be determined. METHOD OF STUDY: Sperm from healthy donors were incubated with dual-tropic HIV-1CS204 (clinical isolate), and virus capture was determined by p24 antigen ELISA. The involvement of SGG in HIV-1 capture was assessed by determining Kd values of HIV-1 gp120-SGG binding as well as computational docking of SGG to the gp120 V3 loop. The ability of sperm-associated HIV-1 to infect peripheral blood mononuclear cells (PBMCs) and TZM-bl indicator cells was determined. Lastly, infection of vaginal (Vk2/E6E7), ectocervical (Ect1/E6E7), and endocervical (End1/E6E7) epithelial cells mediated by HIV-1-associated sperm was evaluated. RESULTS: Sperm were able to capture HIV-1 in a dose-dependent manner, and the capture reached a maximum within 5 minutes. Captured HIV-1, however, could be removed from sperm by Percoll-gradient centrifugation. Affinity of gp120 for SGG was substantial, implicating sperm SGG in HIV-1 capture. Sperm-associated HIV-1 could productively infect PBMCs and TZM-bl cells, and was capable of being transmitted into vaginal/cervical epithelial cells. CONCLUSION: Sperm are able to capture HIV-1, which remains infectious and is able to be transmitted into vaginal/cervical epithelial cells, a result indicating the importance of sperm in HIV transmission.


Subject(s)
Epithelial Cells/virology , HIV Infections/transmission , HIV-1 , Spermatozoa , Cell Line , Cervix Uteri/cytology , Female , Galactolipids/metabolism , HIV Envelope Protein gp120/metabolism , Humans , Leukocytes, Mononuclear/virology , Male , Models, Molecular , Spermatozoa/metabolism , Vagina/cytology
7.
Hum Reprod ; 33(12): 2175-2183, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30357408

ABSTRACT

STUDY QUESTION: Do the truncated LL-37 peptides, GI-20 and GF-17, have spermicidal activity and microbicidal effects on the sexually transmitted infection (STI) pathogen Neisseria gonorrhoeae with equivalent potency to LL-37? SUMMARY ANSWER: GI-20 and GF-17 exhibited spermicidal effects on both mouse and human sperm as well as microbicidal action on N. gonorrhoeae with the same efficacy as LL-37. WHAT IS KNOWN ALREADY: The antimicrobial peptide LL-37 exerts microbicidal activity against various STI pathogens as well as spermicidal effects on both mouse and human sperm. STUDY DESIGN, SIZE, DURATION: Spermicidal activities of GI-20 and GF-17 were evaluated in vitro in mouse and human sperm and in vivo in mice. Finally, in vitro antimicrobial effects of LL-37, GI-20 and GF-17 on an STI pathogen, N. gonorrhoeae were determined. All experiments were repeated three times or more. In particular, sperm samples from different males were used on each experimental day. PARTICIPANTS/MATERIALS, SETTING, METHODS: The plasma membrane integrity of peptide-treated sperm was assessed by cellular exclusion of Sytox Green, a membrane impermeable fluorescent DNA dye. Successful mouse in vitro fertilization was revealed by the presence of two pronuclei in oocytes following co-incubation with capacitated untreated/peptide-pretreated sperm. Sperm plus each peptide were transcervically injected into female mice and the success of in vivo fertilization was scored by the formation of 2-4 cell embryos 42 h afterward. Reproductive tract tissues of peptide pre-exposed females were then assessed histologically for any damage. Minimal inhibitory/bactericidal concentrations of LL-37, GI-20 and GF-17 on N. gonorrhoeae were determined by a standard method. MAIN RESULTS AND THE ROLE OF CHANCE: Like LL-37, treatment of sperm with GI-20 and GF-17 resulted in dose-dependent increases in sperm plasma membrane permeabilization, reaching the maximum at 18 and 3.6 µM for human and mouse sperm, respectively (P < 0.0001, as compared with untreated sperm). Mouse sperm treated with 3.6 µM GI-20 or GF-17 did not fertilize oocytes either in vitro or in vivo. Moreover, reproductive tract tissues of female mice pre-exposed to 3.6 µM GI-20 or GF-17 remained intact with no lesions, erosions or ulcerations. At 1.8-7.2 µM, LL-37, GI-20 and GF-17 exerted bactericidal effects on N. gonorrhoeae. LARGE SCALE DATA: N/A. LIMITATIONS, REASONS FOR CAUTION: Direct demonstration of the inhibitory effects of GI-20 and GF-17 on human in vitro and in vivo fertilization cannot be performed due to ethical issues. WIDER IMPLICATIONS OF THE FINDINGS: Like LL-37, GI-20 and GF-17 acted as spermicides and microbicides against N. gonorrhoeae, without adverse effects on female reproductive tissues. With lower synthesis costs, GI-20 and GF-17 are attractive peptides for further development into vaginal spermicides/microbicides. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by Canadian Institutes of Health Research (MOP119438 and CCI82413 to N.T.) and NIH (R01 AI105147 to G.W.). There are no competing interests to declare.


Subject(s)
Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Neisseria gonorrhoeae/drug effects , Spermatocidal Agents/pharmacology , Spermatozoa/drug effects , Animals , Cell Membrane/drug effects , Humans , Male , Mice , Cathelicidins
8.
Pharmaceuticals (Basel) ; 9(1)2016 Mar 11.
Article in English | MEDLINE | ID: mdl-26978373

ABSTRACT

The concurrent increases in global population and sexually transmitted infection (STI) demand a search for agents with dual spermicidal and microbicidal properties for topical vaginal application. Previous attempts to develop the surfactant spermicide, nonoxynol-9 (N-9), into a vaginal microbicide were unsuccessful largely due to its inefficiency to kill microbes. Furthermore, N-9 causes damage to the vaginal epithelium, thus accelerating microbes to enter the women's body. For this reason, antimicrobial peptides (AMPs), naturally secreted by all forms of life as part of innate immunity, deserve evaluation for their potential spermicidal effects. To date, twelve spermicidal AMPs have been described including LL-37, magainin 2 and nisin A. Human cathelicidin LL-37 is the most promising spermicidal AMP to be further developed for vaginal use for the following reasons. First, it is a human AMP naturally produced in the vagina after intercourse. Second, LL-37 exerts microbicidal effects to numerous microbes including those that cause STI. Third, its cytotoxicity is selective to sperm and not to the female reproductive tract. Furthermore, the spermicidal effects of LL-37 have been demonstrated in vivo in mice. Therefore, the availability of LL-37 as a vaginal spermicide/microbicide will empower women for self-protection against unwanted pregnancies and STI.

SELECTION OF CITATIONS
SEARCH DETAIL
...