Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(25): 255502, 2020 Jun 26.
Article in English | MEDLINE | ID: mdl-32639793

ABSTRACT

The counterintuitive phenomenon of pressure-induced softening in materials is likely to be caused by the same dynamical behavior that produces negative thermal expansion. Through a combination of molecular dynamics simulation on an idealized model and neutron diffraction at variable temperature and pressure, we show the existence of extraordinary and unprecedented pressure-induced softening in the negative thermal expansion material scandium fluoride ScF_{3}. The pressure derivative of the bulk modulus B, B^{'}=(∂B/∂P)_{P=0}, reaches values as low as -220±30 at 50 K, and is constant at -50 between 150 and 250 K.

2.
Rev Sci Instrum ; 82(3): 034101, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21456765

ABSTRACT

Inelastic neutron scattering (INS) is increasingly being used for the characterization of heterogeneous catalysts. As the technique is uniquely sensitive to hydrogen atoms, vibrational spectra can be obtained that emphasize a hydrogenous component or hydrogen-containing moieties adsorbed on to an inorganic support. However, due to sensitivity constraints, the technique typically requires large sample masses (∼10 g catalyst). A reaction system is hereby described that enables suitable quantities of heterogeneous catalysts to be appropriately activated and operated under steady-state conditions for extended periods of time prior to acquisition of the INS spectrum. In addition to ex situ studies, a cell is described which negates the need for a sample transfer stage between reaction testing and INS measurement. This cell can operate up to temperatures of 823 K and pressures up to 20 bar. The apparatus is also amenable to adsorption experiments at the gas-solid interface.

SELECTION OF CITATIONS
SEARCH DETAIL
...