Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
ASAIO J ; 68(4): 592-598, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34352815

ABSTRACT

Dexmedetomidine (DEX) is a sedative used in combination with other drugs in neonates and infants undergoing cardiac surgery using cardiopulmonary bypass (CPB). This study aimed to evaluate the disposition of DEX after administration to the ex vivo CPB circuits following different bolus doses and continuous infusion of DEX, including the effect of circuit coating, temperature, and modified ultrafiltration (MUF). Cardiopulmonary bypass circuits were setup ex vivo and primed with reconstituted blood. Dexmedetomidine was administered to the circuit (as a single bolus or single bolus along with continuous infusion). The circuit was allowed to equilibrate during the first 5 minutes, blood samples were collected at multiple time points (5-240 minutes). Blood samples were processed to collect plasma and analyzed for DEX with a validated assay. The majority of DEX sequestration in ex vivo CPB circuits occurred within the first 15 minutes. The percent of DEX remained in plasma pre-MUF (16-71%) and post-MUF (22-92%) varied depending on the dose and dosing scheme. Modified ultrafiltration significantly increased the plasma concentration of DEX in 19 of 23 circuits by an average of 12.1 ± 4.25% (p < 0.05). The percent sequestration of DEX was lower in CPB circuits at lower DEX doses compared to higher doses. A combination of DEX initial loading dose and continuous infusion resulted in steady concentrations of DEX over 4 hours. At therapeutically relevant concentrations of DEX (485-1,013 pg/ml), lower sequestration was observed in ex vivo CPB circuits compared to higher doses. The sequestration of DEX to circuits should be considered to achieve the optimal concentration of DEX during CPB surgery.


Subject(s)
Cardiac Surgical Procedures , Dexmedetomidine , Cardiopulmonary Bypass/methods , Heart-Lung Machine , Humans , Hypnotics and Sedatives , Infant , Infant, Newborn
2.
Acta Neurochir Suppl ; 131: 295-299, 2021.
Article in English | MEDLINE | ID: mdl-33839861

ABSTRACT

The critical closing pressure (CrCP) of the cerebral vasculature is the arterial blood pressure (ABP) at which cerebral blood flow (CBF) ceases. Because the ABP of preterm infants is low and close to the CrCP, there is often no CBF during diastole. Thus, estimation of CrCP may become clinically relevant in preterm neonates. Transcranial Doppler (TCD) ultrasound has been used to estimate CrCP in preterm infants. Diffuse correlation spectroscopy (DCS) is a continuous, noninvasive optical technique that measures microvascular CBF. Our objective was to compare and validate CrCP measured by DCS versus TCD ultrasound. Hemorrhagic shock was induced in 13 neonatal piglets, and CBF was measured continuously by both modalities. CrCP was calculated using a model of cerebrovascular impedance, and CrCP determined by the two modalities showed good correlation by linear regression, median r 2 = 0.8 (interquartile range (IQR) 0.71-0.87), and Bland-Altman analysis showed a median bias of -3.5 (IQR -4.6 to -0.28). This is the first comparison of CrCP determined by DCS versus TCD ultrasound in a neonatal piglet model of hemorrhagic shock. The difference in CrCP between the two modalities may be due to differences in vasomotor tone within the microvasculature of the cerebral arterioles versus the macrovasculature of a major cerebral artery.


Subject(s)
Spectrum Analysis , Animals , Blood Flow Velocity , Blood Pressure , Cerebrovascular Circulation , Intracranial Pressure , Swine , Ultrasonography, Doppler, Transcranial
3.
Pediatr Res ; 86(2): 242-246, 2019 08.
Article in English | MEDLINE | ID: mdl-31003233

ABSTRACT

BACKGROUND: Cerebrovascular critical closing pressure (CrCP) is the arterial blood pressure (ABP) at which cerebral blood flow ceases. Preterm ABP is low and close to CrCP. The diastolic closing margin (diastolic ABP minus CrCP) has been associated with intraventricular hemorrhage in preterm infants. CrCP is estimated from middle cerebral artery cerebral blood flow velocity (CBFV) and ABP waveforms. However, these estimations have not been validated due to a lack of gold standard. Direct observation of the CrCP in preterm infants with hypotension is an opportunity to validate synchronously estimated CrCP. METHODS: ABP and CBFV tracings were obtained from 24 extremely low birth weight infants. Recordings where diastolic CBFV was zero were identified. The gold standard CrCP was delineated using piecewise regression of ABP and CBFV values paired by rank ordering and then estimated using a published formula. The measured and estimated values were compared using linear regression and Bland-Altman analysis. RESULTS: Linear regression showed a high degree of correlation between measured and calculated CrCP (r2 = 0.93). CONCLUSIONS: This is the first study to validate a calculated CrCP by comparing it to direct measurements of CrCP from preterm infants when ABP is lower than CrCP.


Subject(s)
Blood Pressure , Cerebral Hemorrhage/diagnosis , Cerebrovascular Circulation , Infant, Premature, Diseases/pathology , Middle Cerebral Artery/pathology , Algorithms , Arterial Pressure , Blood Flow Velocity , Blood Pressure Determination , Cerebral Hemorrhage/pathology , Diastole , Female , Hemodynamics , Humans , Infant, Newborn , Infant, Premature , Intracranial Pressure , Linear Models , Male , Perfusion , Regression Analysis , Ultrasonography, Doppler, Transcranial , Vascular Resistance
4.
Pediatr Res ; 84(3): 356-361, 2018 09.
Article in English | MEDLINE | ID: mdl-29538363

ABSTRACT

BACKGROUND: Elevated arterial blood pressure (ABP) is common after superior bidirectional cavopulmonary anastomosis (BCPA). The effects of elevated ABP after BCPA on cerebrovascular hemodynamics are unknown. We sought to determine the relationship between elevated ABP and cerebrovascular autoregulation after BCPA. METHODS: Prospective, observational study on infants with single-ventricle physiology after BCPA surgery. Continuous recordings of mean ABP, mean cavopulmonary artery pressure (PAP), near-infrared spectroscopy measures of cerebral oximetry (regional cerebral oxygen saturation (rSO2)), and relative cerebral blood volume index were obtained from admission to extubation. Autoregulation was measured as hemoglobin volume index (HVx). Physiologic variables, including the HVx, were tested for variance across ABP. RESULTS: Sixteen subjects were included in the study. Elevated ABP post-BCPA was associated with both, elevated PAP (P<0.0001) and positive HVx (dysautoregulation; P<0.0001). No association was observed between ABP and alterations in rSO2. Using piecewise regression, the relationship of PAP to ABP demonstrated a breakpoint at 68 mm Hg (interquartile range (IQR) 62-70 mm Hg). Curve fit of HVx as a function of ABP identified optimal ABP supporting robust autoregulation at a median ABP of 55 mm Hg (IQR 51-64 mm Hg). CONCLUSIONS: Elevated ABP post-BCPA is associated with cerebrovascular dysautoregulation, and elevated PAP. The effects, of prolonged dysautoregulation within this population, require further study.


Subject(s)
Anastomosis, Surgical/adverse effects , Arterial Pressure , Blood Flow Velocity , Cerebrovascular Circulation , Heart Ventricles/physiopathology , Homeostasis , Pulmonary Artery/physiopathology , Blood Pressure Determination , Heart Ventricles/surgery , Hemodynamics , Humans , Infant , Oximetry , Oxygen/blood , Prospective Studies , Pulmonary Artery/surgery , Retrospective Studies
5.
Cardiol Young ; 28(1): 55-65, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28835309

ABSTRACT

BACKGROUND: Cerebrovascular reactivity monitoring has been used to identify the lower limit of pressure autoregulation in adult patients with brain injury. We hypothesise that impaired cerebrovascular reactivity and time spent below the lower limit of autoregulation during cardiopulmonary bypass will result in hypoperfusion injuries to the brain detectable by elevation in serum glial fibrillary acidic protein level. METHODS: We designed a multicentre observational pilot study combining concurrent cerebrovascular reactivity and biomarker monitoring during cardiopulmonary bypass. All children undergoing bypass for CHD were eligible. Autoregulation was monitored with the haemoglobin volume index, a moving correlation coefficient between the mean arterial blood pressure and the near-infrared spectroscopy-based trend of cerebral blood volume. Both haemoglobin volume index and glial fibrillary acidic protein data were analysed by phases of bypass. Each patient's autoregulation curve was analysed to identify the lower limit of autoregulation and optimal arterial blood pressure. RESULTS: A total of 57 children had autoregulation and biomarker data for all phases of bypass. The mean baseline haemoglobin volume index was 0.084. Haemoglobin volume index increased with lowering of pressure with 82% demonstrating a lower limit of autoregulation (41±9 mmHg), whereas 100% demonstrated optimal blood pressure (48±11 mmHg). There was a significant association between an individual's peak autoregulation and biomarker values (p=0.01). CONCLUSIONS: Individual, dynamic non-invasive cerebrovascular reactivity monitoring demonstrated transient periods of impairment related to possible silent brain injury. The association between an impaired autoregulation burden and elevation in the serum brain biomarker may identify brain perfusion risk that could result in injury.


Subject(s)
Cardiopulmonary Bypass/adverse effects , Glial Fibrillary Acidic Protein/blood , Heart Defects, Congenital/blood , Heart Defects, Congenital/surgery , Adolescent , Arterial Pressure , Biomarkers , Blood Flow Velocity , Brain Injuries/etiology , Cerebrovascular Circulation , Child , Child, Preschool , Female , Homeostasis , Humans , Infant , Infant, Newborn , Linear Models , Logistic Models , Male , Monitoring, Intraoperative , Multivariate Analysis , Pilot Projects , Prospective Studies , Spectroscopy, Near-Infrared , United States
6.
Paediatr Anaesth ; 27(9): 911-917, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28719038

ABSTRACT

BACKGROUND: Clinical studies measuring cerebral blood flow in infants during deep hypothermia have demonstrated diminished cerebrovascular pressure autoregulation. The coexistence of hypotension in these cohorts confounds the conclusion that deep hypothermia impairs cerebrovascular pressure autoregulation. AIM: We sought to compare the lower limit of autoregulation and the static rate of autoregulation between normothermic and hypothermic piglets. METHODS: Twenty anesthetized neonatal piglets (5-7 days old; 10 normothermic and 10 hypothermic to 20°C) had continuous measurements of cortical red cell flux using laser Doppler flowmetry, while hemorrhagic hypotension was induced without cardiopulmonary bypass. Lower limit of autoregulation was determined for each subject using piecewise regression and SRoR was determined above and below each lower limit of autoregulation as (%change cerebrovascular resistance/%change cerebral perfusion pressure). RESULTS: The estimated difference in lower limit of autoregulation was 1.4 mm Hg (lower in the hypothermic piglets; 95% C.I. -10 to 14 mm Hg; P=0.6). The median lower limit of autoregulation in the normothermic group was 39 mm Hg [IQR 38-51] vs 35 mm Hg [31-50] in the hypothermic group. Intact steady-state pressure autoregulation was defined as static rate of autoregulation >0.5 and was demonstrated in all normothermic subjects (static rate of autoregulation=0.72 [0.65-0.87]) and in 9/10 of the hypothermic subjects (static rate of autoregulation=0.65 [0.52-0.87]). This difference in static rate of autoregulation of 0.06 (95% C.I. -0.3 to 0.1) was not significant (P=0.4). CONCLUSION: Intact steady-state cerebrovascular pressure autoregulation is demonstrated in a swine model of profound hypothermia. Lower limit of autoregulation and static rate of autoregulation were similar in hypothermic and normothermic subjects.


Subject(s)
Cerebrovascular Circulation/physiology , Homeostasis/physiology , Hypothermia, Induced , Animals , Animals, Newborn , Blood Flow Velocity/physiology , Laser-Doppler Flowmetry , Models, Animal , Swine
7.
Paediatr Anaesth ; 27(9): 905-910, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28653463

ABSTRACT

BACKGROUND: Autoregulation monitoring has been proposed as a means to identify optimal arterial blood pressure goals during cardiopulmonary bypass, but it has been observed that cerebral blood flow is pressure passive during hypothermic bypass. When neonates cooled during cardiopulmonary bypass are managed with vasodilators and controlled hypotension, it is not clear whether hypothermia or hypotension were the cause of impaired autoregulation. AIM: We sought to measure the effect of both arterial blood pressure and hypothermia on autoregulation in a cohort of infants cooled for bypass, hypothesizing a collinear relationship between hypothermia, hypotension, and dysautoregulation. METHODS: Cardiopulmonary bypass was performed on 72 infants at Texas Children's Hospital during 2015 and 2016 with automated physiologic data capture, including arterial blood pressure, nasopharyngeal temperature, cerebral oximetry, and a cerebral blood volume index derived from near infrared spectroscopy. Cooling to 18°C, 24°C, and 30°C was performed on 33, 12, and 22 subjects, respectively. The hemoglobin volume index was calculated as a moving correlation coefficient between mean arterial blood pressure and the cerebral blood volume index. Positive values of the hemoglobin volume index indicate impaired autoregulation. Relationships between variables were assessed utilizing a generalized estimating equation approach. RESULTS: Hypothermia was associated with hypotension, dysautoregulation, and increased cerebral oximetry. Comparing the baseline temperature of 36°C with 18°C, arterial blood pressure was 44 mm Hg (39-52) vs 25 mm Hg (21-31); the hemoglobin volume index was 0.0 (-0.02 to 0.004) vs 0.5 (0.4-0.7) and cerebral oximetry was 59% (57-61) vs 88% (80-92) (Median, 95% CI of median; P<.0001 for all three associations by linear regression with generalized estimation of equations with data from all temperatures measured). CONCLUSIONS: Arterial blood pressure, temperature, and cerebral autoregulation were collinear in this cohort. The conclusion that hypothermia causes impaired autoregulation is thus confounded. The effect of temperature on autoregulation should be delineated before clinical deployment of autoregulation monitors to prevent erroneous determination of optimal arterial blood pressure. Showing the effect of temperature on autoregulation will require a normotensive hypothermic model.


Subject(s)
Cardiopulmonary Bypass , Cerebrovascular Circulation/physiology , Homeostasis , Hypothermia, Induced , Blood Flow Velocity/physiology , Blood Pressure , Female , Humans , Infant, Newborn , Male , Monitoring, Intraoperative/methods , Retrospective Studies , Texas
8.
Acta Neurochir Suppl ; 122: 151-5, 2016.
Article in English | MEDLINE | ID: mdl-27165897

ABSTRACT

Our objective was to quantify cerebrovascular autoregulation as a function of gestational age (GA) and across the phases of the cardiac cycle. One hundred eighty-six premature infants, with a GA range of 23-33 weeks, were monitored using umbilical artery catheters and transcranial Doppler insonation of middle cerebral artery flow velocity (FV) for 1-h sessions over the first week of life. Autoregulation was quantified as a moving correlation coefficient between systolic arterial blood pressure (ABP) and systolic FV (Sx); mean ABP and mean FV (Mx); diastolic ABP and diastolic FV (Dx). Autoregulation was compared across GAs for each aspect of the cardiac cycle. Systolic FV was pressure-passive in infants with the lowest GA, and Sx decreased with increased GA (r = -0.3; p < 0.001). By contrast, Dx was elevated in all subjects, and showed minimal change with increased GA (r = -0.06; p = 0.05). Multivariate analysis confirmed that GA (p < 0.001) and the "closing margin" (p < 0.01) were associated with Sx. Premature infants have low and almost always pressure-passive diastolic cerebral blood FV. Conversely, the regulation of systolic cerebral blood FV by autoregulation was manifested in this cohort at a GA of between 23 and 33 weeks.


Subject(s)
Arterial Pressure/physiology , Cerebrovascular Circulation/physiology , Homeostasis/physiology , Middle Cerebral Artery/diagnostic imaging , Diastole , Female , Gestational Age , Humans , Infant, Extremely Premature , Infant, Newborn , Infant, Premature , Male , Monitoring, Physiologic , Systole , Ultrasonography, Doppler, Transcranial , Umbilical Arteries
9.
Acta Neurochir Suppl ; 122: 147-50, 2016.
Article in English | MEDLINE | ID: mdl-27165896

ABSTRACT

Premature infants are at an increased risk of intraventricular hemorrhage (IVH). The roles of hypotension and hyperemia are still debated. Critical closing pressure (CrCP) is the arterial blood pressure (ABP) at which cerebral blood flow (CBF) ceases. When diastolic ABP is equal to CrCP, CBF occurs only during systole. The difference between diastolic ABP and CrCP is the diastolic closing margin (DCM). We hypothesized that a low DCM was associated with IVH. One hundred eighty-six premature infants, with a gestational age (GA) range of 23-33 weeks, were monitored with umbilical artery catheters and transcranial Doppler insonation of middle cerebral artery flow velocity for 1-h sessions over the first week of life. CrCP was calculated linearly and using an impedance model. A multivariate generalized linear regression model was used to determine associations with severe IVH (grades 3-4). An elevated DCM by either method was associated with IVH (p < 0.0001 for the linear method; p < 0.001 for the impedance model). Lower 5-min Apgar scores, elevated mean CBF velocity, and lower mean ABP were also associated with IVH (p < 0.0001). Elevated DCM, not low DCM, was associated with severe IVH in this cohort.


Subject(s)
Arterial Pressure/physiology , Cerebral Hemorrhage/epidemiology , Cerebral Ventricles , Cerebrovascular Circulation/physiology , Diastole/physiology , Middle Cerebral Artery/diagnostic imaging , Apgar Score , Female , Humans , Infant, Extremely Premature , Infant, Newborn , Infant, Premature , Linear Models , Male , Monitoring, Physiologic , Multivariate Analysis , Odds Ratio , Severity of Illness Index , Ultrasonography, Doppler, Transcranial
10.
Acta Neurochir Suppl ; 122: 229-31, 2016.
Article in English | MEDLINE | ID: mdl-27165912

ABSTRACT

BACKGROUND: The upper limit of cerebrovascular pressure autoregulation (ULA) is inadequately characterized. We sought to delineate the ULA in a neonatal swine model. METHODS: Neonatal piglets with sham surgery (n = 9), interventricular fluid infusion (INF; n = 10), controlled cortical impact (CCI; n = 10), or impact + infusion (CCI + INF; n = 11) had intracranial pressure monitoring and bilateral cortical laser-Doppler flux recordings during arterial hypertension until lethality. An increase in red cell flux as a function of cerebral perfusion pressure was determined by piecewise linear regression and static rates of autoregulation (SRoRs) were determined above and below this inflection. RESULTS: When identified, the ULA (median [interquartile range]) was as follows: sham group: 102 mmHg (97-109), INF group: 75 mmHg (52-84), CCI group: 81 mmHg (69-101), and CCI + INF group: 61 mmHg (52-57; p = 0.01). Both groups with interventricular infusion had significantly lower ULA compared with the sham group. CONCLUSION: Neonatal piglets without intracranial pathological conditions tolerated acute hypertension, with minimal perturbation of cerebral blood flow. Piglets with acutely elevated intracranial pressure, with or without trauma, demonstrated loss of autoregulation when subjected to arterial hypertension.


Subject(s)
Brain Injuries, Traumatic/physiopathology , Cerebrovascular Circulation/physiology , Homeostasis/physiology , Intracranial Hypertension/physiopathology , Animals , Animals, Newborn , Blood Flow Velocity , Brain Injuries, Traumatic/complications , Disease Models, Animal , Intracranial Hypertension/etiology , Intracranial Pressure , Laser-Doppler Flowmetry , Linear Models , Swine
11.
Acta Neurochir Suppl ; 122: 249-53, 2016.
Article in English | MEDLINE | ID: mdl-27165916

ABSTRACT

Premature infants are at risk of vascular neurological insults. Hypotension and hypertension are considered injurious, but neither condition is defined with consensus. Critical closing pressure (CrCP) is the arterial blood pressure (ABP) at which cerebral blood flow ceases. CrCP may serve to define subject-specific low or high ABP. Our objective was to quantify CrCP as a function of gestational age (GA). One hundred eighty-six premature infants with a GA range of 23-33 weeks, were monitored with umbilical artery catheters and transcranial Doppler insonation of middle cerebral artery flow velocity (FV) for 1-h sessions over the first week of life. CrCP was calculated using an impedance model derivation with Doppler-based estimations of cerebrovascular resistance and compliance. CrCP increased significantly with GA (r = 0.47; slope = 1.4 mmHg/week gestation), an association that persisted with multivariate analysis (p < 0.001). Higher diastolic ABP and higher GA were associated with increased CrCP (p <0.001 for both). CrCP increases significantly at the end of the second and beginning of the third trimester. The low CrCP observed in premature infants may explain their ability to tolerate low ABP without global cerebral infarct or hemorrhage.


Subject(s)
Arterial Pressure/physiology , Blood Flow Velocity/physiology , Cerebrovascular Circulation/physiology , Intracranial Pressure/physiology , Middle Cerebral Artery/diagnostic imaging , Diastole , Electric Impedance , Female , Gestational Age , Humans , Infant, Extremely Premature , Infant, Newborn , Infant, Premature , Male , Middle Cerebral Artery/physiology , Models, Cardiovascular , Multivariate Analysis , Ultrasonography, Doppler, Transcranial , Umbilical Arteries/physiology , Vascular Resistance
12.
J Pediatr ; 174: 52-6, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27112042

ABSTRACT

OBJECTIVE: To determine whether the diastolic closing margin (DCM), defined as diastolic blood pressure minus critical closing pressure, is associated with the development of early severe intraventricular hemorrhage (IVH). STUDY DESIGN: A reanalysis of prospectively collected data was conducted. Premature infants (gestational age 23-31 weeks) receiving mechanical ventilation (n = 185) had ∼1-hour continuous recordings of umbilical arterial blood pressure, middle cerebral artery cerebral blood flow velocity, and PaCO2 during the first week of life. Models using multivariate generalized linear regression and purposeful selection were used to determine associations with severe IVH. RESULTS: Severe IVH (grades 3-4) was observed in 14.6% of the infants. Irrespective of the model used, Apgar score at 5 minutes and DCM were significantly associated with severe IVH. A clinically relevant 5-mm Hg increase in DCM was associated with a 1.83- to 1.89-fold increased odds of developing severe IVH. CONCLUSION: Elevated DCM was associated with severe IVH, consistent with previous animal data showing that IVH is associated with hyperperfusion. Measurement of DCM may be more useful than blood pressure in defining cerebral perfusion in premature infants.


Subject(s)
Blood Pressure/physiology , Cerebral Hemorrhage/etiology , Cerebral Hemorrhage/physiopathology , Infant, Premature, Diseases/etiology , Infant, Premature, Diseases/physiopathology , Blood Flow Velocity/physiology , Cohort Studies , Diastole , Female , Humans , Infant, Newborn , Infant, Premature , Male , Middle Cerebral Artery/physiology , Respiration, Artificial , Umbilical Arteries/physiology
13.
Neurol Res ; 38(3): 196-204, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26311295

ABSTRACT

OBJECTIVES: In the present study, our objective was to determine if hypercarbia would alter cerebral blood flow (CBF) autoregulation and reduce the ability of cerebrovascular reactivity monitoring to identify the lower limit of cerebrovascular autoregulation (LLA). METHODS: Anaesthetised juvenile pigs were assigned between two groups: normocarbia (control group, n = 10) or hypercarbia [high carbon dioxide (CO2) group, n = 8]. Normocarbia subjects were maintained with an arterial CO2 of 40 Torr, while the hypercarbia subjects had an increase of inspired CO2 to achieve an arterial pCO2 of >80 Torr. Gradual hypotension was induced by continuous haemorrhage from a catheter in the femoral vein, and the LLA was determined by monitoring cortical laser Doppler flux (LDF). Vascular reactivity monitoring was performed using the pressure reactivity index (PRx) and haemoglobin volume index (HVx). RESULTS: There were no sustained differences in ICP between groups. Autoregulation was present in both groups, despite elevation in pCO2.The control group had an average LLA of 45 mmHg (95% CI: 43-47 mmHg) and the high CO2 group had a LLA of 75 mmHg (95% CI: 73-77 mmHg). The detected LLA for each subject correlated with the level of pCO2 (spearman R = 0.8243, P < 0.0001). Both the PRx and HVx accurately detected the LLA despite the presence of hypercarbia. DISCUSSION: Hypercarbia without acidosis increases the observed LLA independent of alterations in ICP. Elevations in CO2 can impair cerebrovascular autoregulation, but if there is a sufficient increase in blood pressure above the CO2 altered LLA, then autoregulation persists.


Subject(s)
Carbon Dioxide/pharmacology , Cerebrovascular Circulation/drug effects , Homeostasis/drug effects , Animals , Blood Flow Velocity/drug effects , Blood Gas Analysis , Blood Pressure/drug effects , Cerebral Blood Volume/drug effects , Cerebrovascular Circulation/physiology , Homeostasis/physiology , Intracranial Pressure/drug effects , Laser-Doppler Flowmetry , Models, Animal , Monitoring, Physiologic , ROC Curve , Swine
15.
Oncotarget ; 6(8): 5536-46, 2015 Mar 20.
Article in English | MEDLINE | ID: mdl-25849940

ABSTRACT

Glioblastoma (GBM) is a highly aggressive primary brain tumor that is especially difficult to treat. The tumor's ability to withstand hypoxia leads to enhanced cancer cell survival and therapy resistance, but also yields a microenvironment that is in many aspects unique within the human body, thus offering potential therapeutic opportunities. The spore-forming anaerobic bacterium Clostridium novyi-NT(C. novyi-NT) has the ability to propagate in tumor-generated hypoxia, leading to oncolysis. Here, we show that intravenously injected spores of C. novyi-NT led to dramatic tumor destructions and significant survival increases in implanted, intracranial syngeneic F98 and human xenograft 060919 rat GBM models. C. novyi-NT germination was specific and confined to the neoplasm, with sparing of the normal brain parenchyma. All animals tolerated the bacteriolytic treatment, but edema and increased intracranial pressure could quickly be lethal if not monitored and medically managed with hydration and antibiotics. These results provide pre-clinical data supporting the development of this therapeutic approach for the treatment of patients with GBM.


Subject(s)
Brain Neoplasms/microbiology , Brain Neoplasms/therapy , Clostridium/physiology , Glioblastoma/microbiology , Glioblastoma/therapy , Injections, Intravenous/veterinary , Animals , Antineoplastic Agents/administration & dosage , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Hypoxia/physiology , Clostridium/growth & development , Clostridium/metabolism , Clostridium Infections/metabolism , Clostridium Infections/microbiology , Clostridium Infections/pathology , Female , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Rats , Rats, Inbred F344 , Rats, Nude , Spores, Bacterial , Xenograft Model Antitumor Assays
16.
Pediatr Res ; 78(1): 71-5, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25826118

ABSTRACT

BACKGROUND: Premature infants are at risk of vascular neurologic insults. Hypotension and hypertension are considered injurious, but neither condition is defined with consensus. Cerebrovascular critical closing pressure (CrCP) is the arterial blood pressure (ABP) at which cerebral blood flow (CBF) ceases. CrCP may serve to define subject-specific low or high ABP. Our objective was to determine the ontogeny of CrCP. METHODS: Premature infants (n = 179) with gestational age (GA) from 23-31 wk had recordings of ABP and middle cerebral artery flow velocity twice daily for 3 d and then daily for the duration of the first week of life. All infants received mechanical ventilation. CrCP was calculated using an impedance-model derivation with Doppler-based estimations of cerebrovascular resistance and compliance. The association between GA and CrCP was determined in a multivariate analysis. RESULTS: The median (interquartile range) CrCP for the cohort was 22 mm Hg (19-25 mm Hg). CrCP increased significantly with GA (r = 0.6; slope = 1.4 mm Hg/wk gestation), an association that persisted with multivariate analysis (P < 0.0001). CONCLUSION: CrCP increased significantly from 23 to 31 wk gestation. The low CrCP observed in very premature infants may explain their ability to tolerate low ABP without global cerebral infarct or hemorrhage.


Subject(s)
Blood Flow Velocity/physiology , Cerebrovascular Circulation/physiology , Arterial Pressure , Blood Pressure/physiology , Female , Gestational Age , Humans , Infant, Newborn , Infant, Premature , Male , Middle Cerebral Artery , Monitoring, Physiologic , Multivariate Analysis , Prospective Studies , Respiration, Artificial , Ultrasonography, Doppler, Transcranial , Vascular Resistance/physiology
17.
Neurol Res ; 36(12): 1063-71, 2014 Dec.
Article in English | MEDLINE | ID: mdl-24892946

ABSTRACT

OBJECTIVES: Recent studies suggest that elevated intracranial pressure (ICP), created by hydrocephalus, can alter the lower limit of cerebrovascular autoregulation (LLA). Our objective in the present study was to determine if ICP elevation from cerebral venous outflow obstruction would result in comparable alterations in the LLA. METHODS: Anesthetized juvenile pigs were assigned to one of two groups: naïve ICP (n  =  15) or high ICP (>20 mmHg; n  =  20). To elevate ICP through venous obstruction, a modified 5F esophageal balloon catheter was inserted via the right external jugular vein into the superior vena cava (SVC) and inflated to maintain an ICP of >20 mmHg. To calculate the LLA, gradual hypotension was induced by continuous hemorrhage from a catheter in the femoral vein. The LLA was determined by monitoring cortical laser Doppler flux (LDF). RESULTS: The naïve and high ICP groups had LLAs of 45 mmHg (95% CI: 41-49 mmHg) and 71 mmHg (95% CI: 66-77 mmHg) respectively by LDF. The LLA was significantly different between the two groups and correlated significantly with ICP. DISCUSSION: Elevated ICP from cephalic venous engorgement leads to an increase in the LLA. These findings suggest that pathologic processes resulting in cephalic venous outflow obstruction and intracranial venous congestion can acutely elevate ICP and may place the brain at risk for impaired cerebrovascular autoregulation.


Subject(s)
Cerebrovascular Circulation/physiology , Homeostasis , Intracranial Pressure/physiology , Animals , Intracranial Hypertension/physiopathology , Jugular Veins/physiology , Swine , Venous Pressure
18.
Neurosurgery ; 75(2): 163-70; discussion 169-70, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24739364

ABSTRACT

BACKGROUND: The upper limit of cerebrovascular pressure autoregulation (ULA) is inadequately characterized. OBJECTIVE: To delineate the ULA in an infant swine model. METHODS: Neonatal piglets with sham surgery (n = 9), interventricular fluid infusion (INF) (n = 10), controlled cortical impact (CCI) (n = 10), or CCI + INF (n = 11) had intracranial pressure monitoring and bilateral cortical laser-Doppler flowmetry recordings during arterial hypertension to lethality using an aortic balloon catheter. An increase of red cell flux as a function of cerebral perfusion pressure was determined by piecewise linear regression, and static rates of autoregulation were determined above and below this inflection. The ULA was rendered as the first instance of an upward deflection of Doppler flux causing a static rate of autoregulation decrease greater than 0.5. RESULTS: ULA was identified in 55% of piglets after sham surgery, 70% after INF, 70% after CCI, and 91% after CCI with INF (P = .36). When identified, the median (interquartile range) ULA was as follows: sham group, 102 mm Hg (97-109 mm Hg); INF group, 75 mm Hg (52-84 mm Hg); CCI group, 81 mm Hg (69-101 mm Hg); and CCI + INF group, 61 mm Hg (52-57 mm Hg) (P = .01). In post hoc analysis, both groups with interventricular INF had significantly lower ULA than that observed in the sham group. CONCLUSION: Neonatal piglets without intracranial pathology tolerated acute hypertension with minimal perturbation of cerebral blood flow. Piglets with acutely increased intracranial pressure with or without trauma demonstrated loss of autoregulation when subjected to arterial hypertension.


Subject(s)
Brain/blood supply , Cerebrovascular Circulation/physiology , Homeostasis/physiology , Intracranial Hypertension/physiopathology , Animals , Animals, Newborn , Blood Flow Velocity , Disease Models, Animal , Intracranial Pressure/physiology , Laser-Doppler Flowmetry , Models, Animal , Swine
19.
Aviat Space Environ Med ; 85(1): 50-4, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24479259

ABSTRACT

BACKGROUND: Ultrasound (U/S) and MRI measurements of the optic nerve sheath diameter (ONSD) have been proposed as intracranial pressure measurement surrogates, but these methods have not been fully evaluated or standardized. The purpose of this study was to develop an ex-vivo model for evaluating ONSD measurement techniques by comparing U/S and MRI measurements to physical measurements. METHODS: The left eye of post mortem juvenile pigs (N = 3) was excised and the subdural space of the optic nerve cannulated. Caliper measurements and U/S imaging measurements of the ONSD were acquired at baseline and following 1 cc saline infusion into the sheath. The samples were then embedded in 0.5% agarose and imaged in a 7 Tesla (7T) MRI. The ONSD was subsequently measured with digital calipers at locations and directions matching the U/S and direct measurements. RESULTS: Both MRI and sonographic measurements were in agreement with direct measurements. U/S data, especially axial images, exhibited a positive bias and more variance (bias: 1.318, 95% limit of agreement: 8.609) compared to MRI (bias: 0.3156, 95% limit of agreement: 2.773). In addition, U/S images were much more dependent on probe placement, distance between probe and target, and imaging plane. CONCLUSIONS: This model appears to be a valid test-bed for continued scrutiny of ONSD measurement techniques. In this model, 7T MRI was accurate and potentially useful for in-vivo measurements where direct measurements are not available. Current limitations with ultrasound imaging for ONSD measurement associated with image acquisition technique and equipment necessitate further standardization to improve its clinical utility.


Subject(s)
Optic Nerve/anatomy & histology , Animals , In Vitro Techniques , Intracranial Pressure , Magnetic Resonance Imaging , Models, Animal , Optic Nerve/diagnostic imaging , Surgical Instruments , Swine , Ultrasonography
20.
Aviat Space Environ Med ; 84(9): 946-51, 2013 Sep.
Article in English | MEDLINE | ID: mdl-24024306

ABSTRACT

BACKGROUND: Nontraumatic, nonhydrocephalic increases in intracranial pressure (ICP) are often difficult to diagnose and may underlie spaceflight-related visual changes. This study looked at the utility of a porcine animal model of increasing cephalic venous pressure to mimic acute changes in ICP and optic nerve sheath diameter (ONSD) from cephalic venous fluid shifts observed during spaceflight. METHODS: Anesthetized juvenile piglets were assigned to groups of either naïve (N = 10) or elevated superior vena cava pressure (SVCP; N = 20). To elevate SVCP, a 6F custom latex balloon catheter was inserted and inflated to achieve SVCP of 20 and 40 mmHg for 1 h at each pressure. In both groups, serial measurements of ICP, internal jugular pressure (IJP), and external jugular pressure (EJP) were made hourly for 3 h, and ONSD of the right eye was measured hourly by ultrasound (US). RESULTS: There was a significant linear correlation between IJP and ICP (slope: 0.9614 +/- 0.0038, r = 0.9683). With increasing SVCP, resulting ONSD was also well correlated with the ICP (slope: 0.0958 +/- 0.0061, r = 0.7841). The receiver operating characteristic curve for ONSD in diagnosing elevated ICP had an area under the curve of 0.9632 with a sensitivity and specificity of 92% and 91%, respectively, for a cutoff of 5.45 mm. CONCLUSIONS: Increases in SVCP result in ICP changes that are well correlated with alteration in ONSD. These changes are consistent with observed ONSD changes monitored during spaceflight.


Subject(s)
Intracranial Hypertension/diagnosis , Optic Nerve/diagnostic imaging , Venous Pressure/physiology , Aerospace Medicine , Animals , Intracranial Hypertension/physiopathology , Intracranial Pressure/physiology , Jugular Veins/physiopathology , Models, Animal , ROC Curve , Sensitivity and Specificity , Space Flight , Swine , Ultrasonography , Vena Cava, Superior/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...