Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Phys ; 41(3): 162-8, 2016.
Article in English | MEDLINE | ID: mdl-27651562

ABSTRACT

This study reviewed prostate volumetric-modulated arc therapy (VMAT) plans with intensity-modulated radiotherapy (IMRT) plans after prostate IMRT technique was replaced by VMAT in an institution. Characterizations of dosimetry and radiobiological variation in prostate were determined based on treatment plans of 40 prostate IMRT patients (planning target volume = 77.8-335 cm(3)) and 50 VMAT patients (planning target volume = 120-351 cm(3)) treated before and after 2013, respectively. Both IMRT and VMAT plans used the same dose-volume criteria in the inverse planning optimization. Dose-volume histogram, mean doses of target and normal tissues (rectum, bladder and femoral heads), dose-volume points (D99% of planning target volume; D30%, D50%, V30 Gy and V35 Gy of rectum and bladder; D5%, V14 Gy, V22 Gy of femoral heads), conformity index (CI), homogeneity index (HI), gradient index (GI), prostate tumor control probability (TCP), and rectal normal tissue complication probability (NTCP) based on the Lyman-Burman-Kutcher algorithm were calculated for each IMRT and VMAT plan. From our results, VMAT plan was found better due to its higher (1.05%) CI, lower (0.83%) HI and (0.75%) GI than IMRT. Comparing doses in normal tissues between IMRT and VMAT, it was found that IMRT mostly delivered higher doses of about 1.05% to the normal tissues than VMAT. Prostate TCP and rectal NTCP were found increased (1%) for VMAT than IMRT. It is seen that VMAT technique can decrease the dose-volume evaluation criteria for the normal tissues. Based on our dosimetric and radiobiological results in treatment plans, it is concluded that our VMAT implementation could produce comparable or slightly better target coverage and normal tissue sparing with a faster treatment time in prostate radiotherapy.

2.
Med Dosim ; 40(4): 355-65, 2015.
Article in English | MEDLINE | ID: mdl-26119108

ABSTRACT

Radiation therapy of the intact breast is the standard therapy for preventing local recurrence of early-stage breast cancer following breast conservation surgery. To improve patient standard of care, there is a need to define a consistent and transparent treatment path for all patients that reduces significance variations in the acceptability of treatment plans. There is lack of consistency among institutions or individuals about what is considered an acceptable treatment plan: target coverage vis-à-vis dose to organs at risk (OAR). Clinical trials usually resolve these issues, as the criteria for an acceptable plan within the trial (target coverage and doses to OAR) are well defined. We developed an institutional criterion for accepting breast treatment plans in 2006 after analyzing treatment data of approximately 200 patients. The purpose of this article is to report on the dosimetric review of 623 patients treated in the last 18 months to evaluate the effectiveness of the previously developed plan acceptability criteria and any possible changes necessary to further improve patient care. The mean patient age is 61.6 years (range: 25.2 to 93.0 years). The mean breast separation for all the patients is 21.0cm (range: 12.4 to 34.9cm), and the mean planning target volume (PTV_eval) (breast volume for evaluation) is 884.0cm(3) (range: 73.6 to 3684.6cm(3)). Overall, 314 (50.4%) patients had the disease in the left breast and 309 (49.6%) had it in the right breast. A total of 147 (23.6%) patients were treated using the deep inspiration breath-hold (DIBH) technique. The mean normalized PTV_eval receiving at least 92% (V92% PD) and 95% (V95% PD) of the prescribed dose (PD) are more than 99% and 97%, respectively, for all patients. The mean normalized PTV_eval receiving at least 105% (V105% PD) of the PD is less than 1% for all groups. The mean homogeneity index (HI), uniformity index (UI), and conformity index (CI) for the PTV_eval are 0.09 (range: 0.05 to 0.15), 1.07 (range: 0.46 to 1.11), and 0.98 (range: 0.92 to 1.0), respectively. Our data confirm the significant advantage of using DIBH to reduce heart dose when compared with the free-breathing technique. The p values analyses of the results for the V5Gy, V10Gy, V15Gy, V20Gy, and V30Gy for the heart comparing DIBH and free-breathing techniques are well less than 0.05 (i.e., p < 0.05). However, similar analyses for the lung give values greater than 0.05 (i.e., p > 0.05), indicating that there is no significant difference in lung dose comparing the 2 treatment techniques.


Subject(s)
Breast Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/statistics & numerical data , Adult , Aged , Aged, 80 and over , Female , Heart , Humans , Lung , Middle Aged , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...