Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 116(11): 116802, 2016 Mar 18.
Article in English | MEDLINE | ID: mdl-27035317

ABSTRACT

We evidence excited state emission from p states well below ground state saturation in CdSe nanoplatelets. Size-dependent exciton ground and excited state energies and population dynamics are determined by four independent methods: time-resolved PL, time-integrated PL, rate equation modeling, and Hartree renormalized k·p calculations-all in very good agreement. The ground state-excited state energy spacing strongly increases with the lateral platelet quantization. Depending on its detuning to the LO phonon energy, the PL decay of CdSe platelets is governed by a size tunable LO phonon bottleneck, related to the low exciton-phonon coupling, very large oscillator strength, and energy spacing of both states. This is, for instance, ideal to tune lasing properties. CdSe platelets are perfectly suited to control the exciton-phonon interaction by changing their lateral size while the optical transition energy is determined by their thickness.

2.
Phys Chem Chem Phys ; 18(4): 3197-203, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26743562

ABSTRACT

We investigate the temperature-dependent decay kinetics of type II CdSe-CdTe and CdTe-CdSe core-lateral shell nanoplatelets. From a kinetic analysis of the photoluminescence (PL) decay and a measurement of the temperature dependent quantum yield we deduce the temperature dependence of the non-radiative and radiative lifetimes of hetero nanoplates. In line with the predictions of the giant oscillator strength effect in 2D we observe a strong increase of the radiative lifetime with temperature. This is attributed to an increase of the homogeneous transition linewidth with temperature. Comparing core only and hetero platelets we observe a significant prolongation of the radiative lifetime in type II platelets by two orders in magnitude while the quantum yield is barely affected. In a careful analysis of the PL decay transients we compare different recombination models, including electron hole pairs and exciton decay, being relevant for the applicability of those structures in photonic applications like solar cells or lasers. We conclude that the observed biexponential PL decay behavior in hetero platelets is predominately due to spatially indirect excitons being present at the hetero junction and not ionized e-h pair recombination.

SELECTION OF CITATIONS
SEARCH DETAIL
...