Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
Add more filters










Publication year range
1.
Front Microbiol ; 14: 1184070, 2023.
Article in English | MEDLINE | ID: mdl-37455720

ABSTRACT

Mine driven trace elements' pollution entails environmental risks and causes soil infertility. In the last decades, in situ techniques such as phytostabilization have become increasingly important as ways to tackle these negative impacts. The aim of this study was to test the individual and combined effects of different aided phytostabilization techniques using substrate from barren tailings of a Cu mine, characterized by extreme infertility (high acidity and deficiency of organic matter and nutrients). The experiment analyzed the growth of Populus nigra L. planted alone (P) or in co-cropping with Trifolium repens L. (PT), in pots containing mine soil amended with compost (1, 10, compost, soil, w/w) non inoculated (NI) or inoculated with plant growth promoting rhizobacteria (PGP), mycorrhizae (MYC) or a combination of bacterial and fungal inocula (PGPMYC). Non-amended, non-planted and non-inoculated reference ports were also prepared. Plants were harvested after 110 days of plant development and several biometric and phytopathological parameters (stem height, aerial biomass, root biomass, wilting, chlorosis, pest and death) and macro and micronutrient composition were determined. The growth substrate was analyzed for several physicochemical (pH, CECe, and exchangeable cations, total C and N, P Olsen and availability of trace elements) and microbiological (community level physiological profiles: activity, richness and diversity) parameters. The use of the amendment, P. nigra plantation, and inoculation with rhizobacteria were the best techniques to reduce toxicity and improve soil fertility, as well as to increase the plant survival and growth. Soil bacterial functional diversity was markedly influenced by the presence of plants and the inoculation with bacteria, which suggests that the presence of plant regulated the configuration of a microbial community in which the inoculated bacteria thrive comparatively better. The results of this study support the use of organic amendments, tolerant plants, and plant growth promoting rhizobacteria to reduce environmental risk and improve fertility of soils impacted by mining.

2.
J Hazard Mater ; 433: 128764, 2022 07 05.
Article in English | MEDLINE | ID: mdl-35390620

ABSTRACT

Lindane and other 1,2,3,4,5,6-hexachlorocyclohexane (HCH) isomers are persistent organic pollutants highly hydrophobic, which hampers their availability and biodegradation. This work aimed at (i) investigating genes encoding enzymes involved in HCH degradation in the bacterium Sphingobium sp. D4, (ii) selecting strains, from a collection of environmental isolates, able to mobilize HCHs from contaminated soil, and (iii) analysing the biodegradation of HCHs by strain D4 in co-culture with HCH-mobilizing strains or when cultivated with root exudates. Fragments of the same size and similar sequence to linA and linB genes were successfully amplified. Two isolates, Streptomyces sp. M7 and Rhodococcus erythropolis ET54b able to produce emulsifiers and to mobilize HCH isomers from soil were selected. Biodegradation of HCH isomers by strain D4 was enhanced when co-inoculated with HCH mobilizing strains or when cultivated with root exudates. The degrader strain D4 was able to decompose very efficiently HCHs isomers, reducing their concentration in soil slurries by more than 95% (from an average initial amount of 50 ± 8 mg HCH kg-1 soil) in 9 days. The combination of HCH-degrading and HCH-mobilizing strains can be considered a promising inoculum for future soil bioremediation studies using bioaugmentation techniques or in combination with plants in rhizodegradation assays.


Subject(s)
Soil Pollutants , Sphingomonadaceae , Biodegradation, Environmental , Coculture Techniques , Exudates and Transudates/chemistry , Exudates and Transudates/metabolism , Hexachlorocyclohexane/chemistry , Soil/chemistry , Soil Pollutants/metabolism , Sphingomonadaceae/genetics , Sphingomonadaceae/metabolism
3.
Sci Total Environ ; 789: 147950, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34082195

ABSTRACT

To improve the efficiency of Ni phytoextraction, the metal hyperaccumulator N. goesingensis was subject to treatment with a combination of a Ni uptake stimulating microorganism and the commercially available, IAA- based biostimulating seaweed extract - Kelpak. Additionally, we compared the plant growth promoting and Ni uptake capabilities of the two biofertilizers. Treatment with the Kelpak alone had no significant effect on plant growth or Ni accumulation. Inoculation of N. goesingensis with Phomopsis columnaris significantly improved the biomass of the hyperaccumulating plant and Ni yield per plant and improved several plant biometric features such as fresh and dry weight and several others related to leaf and root size. However, the combination of the two treatments yielded the best results; plants treated with the two growth promoting agents yielded 85% more biomass compared to not treated plants and accumulated 48% more Ni per plant. To verify plant inoculation with the fungus we generated a GFP expressing strain of P. columnaris and visualized the fungus in both plant leaves and roots. To trace the development of the fungus in planta and to evaluate the effect of biostimulant treatment on mycelium development fungal translational elongation factor 1α (tef1α) DNA was quantified with qPCR. Upon biofertilizer the abundance P. columnaris in plant leaves increased nearly 5-fold. The utilization of plant growth stimulating microorganisms, endophytic fungi in particular, can significantly improve Ni phytoextraction in hyperaccumulator N. goesingensis.


Subject(s)
Plant Growth Regulators , Soil Pollutants , Biodegradation, Environmental , Fungi , Plant Development , Plant Roots/chemistry , Soil Pollutants/analysis
4.
Chemosphere ; 277: 130272, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33773318

ABSTRACT

The diversity of cultivable bacteria associated with plants from phytomanaged soils with mixed trace metal (TM) and polycyclic aromatic hydrocarbon (PAH) contamination in Pierrelaye (France) was evaluated. The emphasis was on the cultivable bacterial community since the overall objective is to obtain inoculants to improve the remediation of this type of contaminated site. Root endophytic and rhizosphere soil bacterial counts were determined, and isolates were pooled by amplified rDNA restriction analysis and identified by 16S rDNA sequencing. Isolates were further characterized for the production of plant growth-promoting (PGP) substances, and resistance to TM. The selected strains were evaluated for their ability to degrade PAHs. The potential of cell-free microbial supernatant to increase the mobilisation of PAHs from the polluted soil of Pierrelaye was also evaluated. Proteobacteria and Actinobacteria dominated the collection of isolates, and differences in taxonomic diversity were observed between plant species (Populus or Zea mays) and depending on the remediation treatment (Populus inoculation with mycorrhizae or Populus intercropping with Alnus). The majority of isolates exhibited at least one of the tested PGP traits, as well as resistance to more than one TM. Several rhizosphere, endophyte and even one bulk soil isolate showed high rates of fluoranthene and pyrene reduction. The endophyte Rhizobium strain MR28 isolated from maize and degrading pyrene produced bioemulsifying molecules capable of improving the availability of PAHs from the soil of Pierrelaye. A selection of the most interesting strains was made for further re-inoculation experiments in order to assess their potential in rhizoremediation processes.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Endophytes/genetics , France , Soil , Soil Microbiology , Soil Pollutants/analysis
5.
Sci Total Environ ; 768: 144666, 2021 May 10.
Article in English | MEDLINE | ID: mdl-33736318

ABSTRACT

The role of endophytic fungi isolated from different populations of European Ni hyperaccumulators was investigated in regard to the microorganisms' ability to enhance the hyperaccumulation of Ni in Noccaea caerulescens. Effects of particular species of endophytic fungi on adaptation of N. caerulescens to excess Ni were tested by co-cultivation with single strains of the fungi. Seven of these had a positive effect on plant biomass production, whereas two of the tested species inhibited plant growth; biomass production of inoculated plants was significantly different compared to non-inoculated control. Inoculation with six fungal strains: Embellisia thlaspis, Pyrenochaeta cava, Phomopsis columnaris, Plectosphaerella cucumerina, Cladosporium cladosporioides and Alternaria sp. stimulated the plant to uptake and accumulate more Ni in both roots and shoots, compared to non-inoculated control. P. columnaris was isolated from all plant species sampled. Strains isolated from Noccaea caerulescens and Noccaea goesingensis increased Ni root and shoot accumulation of their native hosts (compared to non-inoculated control). Inoculation of different populations of Noccaea with P. columnaris of foreign origin did not cause its host to accumulate more Ni, with the exception of the Ni-unadapted ecotype of N. goesingensis. Inoculation with P. columnaris from N. caerulescens significantly improved Ni uptake, but the effect of the fungus was not as prominent as in the case of N. caerulescens. By comparing the transcriptomes of N. caerulescens and N. goesingensis from Flatz inoculated with P. columnaris, we showed that enhanced uptake and accumulation of Ni in the plants is accompanied by an upregulation of several genes mainly involved in plant stress protection and metal uptake and compartmentation.


Subject(s)
Brassicaceae , Nickel , Ascomycota , Cladosporium , Fungi
6.
Environ Sci Pollut Res Int ; 27(36): 44820-44834, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32975751

ABSTRACT

The phytomanagement concept combines a sustainable reduction of pollutant linkages at risk-assessed contaminated sites with the generation of both valuable biomass for the (bio)economy and ecosystem services. One of the potential benefits of phytomanagement is the possibility to increase biodiversity in polluted sites. However, the unique biodiversity present in some polluted sites can be severely impacted by the implementation of phytomanagement practices, even resulting in the local extinction of endemic ecotypes or species of great conservation value. Here, we highlight the importance of promoting measures to minimise the potential adverse impact of phytomanagement on biodiversity at polluted sites, as well as recommend practices to increase biodiversity at phytomanaged sites without compromising its effectiveness in terms of reduction of pollutant linkages and the generation of valuable biomass and ecosystem services.


Subject(s)
Soil Pollutants , Biodegradation, Environmental , Biodiversity , Biomass , Ecosystem , Soil , Soil Pollutants/analysis
7.
Chemosphere ; 241: 124920, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31605992

ABSTRACT

Plants and their associated microbiota can have a significant impact on the behaviour of soil contaminants. Particularly, root exudation is one of the most important plant-associated processes in this respect, as it may have a substantial effect on the bioavailability of soil contaminants, specially of hydrophobic contaminants strongly sorbed by soil. The aim of the present study was to evaluate the effect of root exudates (natural and artificial) on the desorption of α-, ß-, δ- and γ-isomers of hexachlorocyclohexane (HCH) from contaminated soil, using batch experiments. Natural root exudates were obtained from Holcus lanatus plants growing in the same (contaminated) area. Fifteen compounds (mainly organic acids and phenolic compounds) usually found in root exudates were also tested, individually or as mixtures (1 and 10 mM). Both natural and artificial exudates favoured the mobilization of sorbed HCH in soil. The effect was highly significant for α-, ß- and γ-HCH isomers, for which the desorption rates increased by 23.0, 26.8 and 15.5% in the presence of natural root exudates and by 40.1, 25.9 and 25.6% in the presence of the artificial mixture (at 10 mM). The δ-HCH desorption rates increased by less than 10%. The effect of individual exudate components was very variable, but increased with the carbon content, reflecting the significance of hydrophobic interactions between the exudates and HCH molecules in the desorption of these last from soil. These findings indicate that plants may significantly influence the bioavailability of persistent contaminants, with major implications for improving phyto- and bioremediation procedures.


Subject(s)
Hexachlorocyclohexane/isolation & purification , Holcus/metabolism , Plant Exudates/metabolism , Plant Roots/metabolism , Soil Pollutants/analysis , Adsorption , Biodegradation, Environmental , Hexachlorocyclohexane/pharmacokinetics , Isomerism , Organic Chemicals/analysis , Soil/chemistry
8.
J Environ Manage ; 246: 840-848, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31229766

ABSTRACT

Bioremediation is a soil clean-up technique which exploits the metabolic capacity of microorganisms to degrade soil contaminants. A model was developed to simulate the ex situ bioremediation of a diesel-contaminated soil in a bio-slurry reactor inoculated with a diesel-degrading bacterial strain. Mass transfer processes involving desorption of diesel from soil to water and volatilization of diesel from water, and biodegradation by the bacterial inoculant were included in the model by using Weibull sigmoid kinetics and logistic/Monod kinetics respectively. Model parameters were estimated in batch-based abiotic and biodegradation experiments. Sensitivity analysis revealed the importance of maintaining a high bacterial density in the system for maximum bioremediation efficiency. The model was validated using a pilot bioreactor monitored for 528 h, which removed almost 90% of the diesel present in the system. The results revealed the capacity of the model to predict the bioremediation efficiency under different scenarios by adapting the input parameters to each system.


Subject(s)
Soil Pollutants , Biodegradation, Environmental , Bioreactors , Gasoline , Hydrocarbons , Soil , Soil Microbiology
9.
Int J Phytoremediation ; 21(4): 325-333, 2019.
Article in English | MEDLINE | ID: mdl-30648417

ABSTRACT

The impact of contaminated bottom sediments on plant growth and soil enzyme activities was evaluated in a greenhouse pot study. The sediments were moderately contaminated with zinc and heavily contaminated with polycyclic aromatic hydrocarbons and polychlorinated dibenzo-p-dioxins and furans. The sediments were mixed with soil and planted with either Festuca arundinacea or Tagetes patula. The capacity of two rhizobacterial strains (Massilia niastensis P87 and Streptomyces costaricanus RP92), previously isolated from contaminated soils, to improve plant growth under the chemical stress was tested. Application of sediments to soil was severely phytotoxic to T. patula and mildly to F. arundinacea. On the other hand, the addition of sediments enhanced the soil enzymatic activity. Inoculation with both bacterial strains significantly increased shoot (up to 2.4-fold) and root (up to 3.4-fold) biomass of T. patula. The study revealed that the selected plant growth-promoting bacterial strains were able to alleviate phytotoxicity of bottom sediments to T. patula resulting from the complex character of the contamination.


Subject(s)
Soil Pollutants/analysis , Soil , Biodegradation, Environmental , Plant Development , Plant Roots/chemistry , Soil Microbiology
10.
Sci Total Environ ; 645: 380-392, 2018 Dec 15.
Article in English | MEDLINE | ID: mdl-30029117

ABSTRACT

Most of the research dedicated to agromining has focused on cultivating a single hyperaccumulator plant, although plant diversity has been shown to positively modify soil characteristics. Hence, we compared the effect of cropping a nickel-hyperaccumulator Alyssum murale with a legume (Vicia sativa) to A. murale's mono-culture, on the bacterial diversity and physico-chemical characteristics of an ultramafic soil. A pot experiment with 5 replicates was conducted in controlled conditions for 11 months. The treatments studied were: co-cropping and rotation vs. mineral fertilization controls and bare soil. The introduction of legumes induced a clearly positive effect on the soil's microbial biomass carbon and nitrogen. Arylsulfatase and urease activities tended to be enhanced in the co-cropping and rotation treatments and to be lessened in the mineral fertilization treatments. However, ß-glucosidase and phosphatase activities were seen to decrease when legumes were used. Our results showed that the rotation treatment induced a higher organic matter content than the fertilized control did. Actinobacteria was the most-represented bacterial phyla and had lower relative abundance in treatments associating legumes. Conversely, the relative abundance of Acidobacteria and Gemmatimonadetes phyla increased but not significantly in treatments with legumes. The relative abundance of Chloroflexi phylum was shown to be significantly higher for the fertilized rotation control. The relative abundance of ß-Proteobacteria subphylum increased but not significantly in treatments with legumes. NMDS analysis showed a clear separation between planted treatments and bare soil and between co-cropping and rotation and fertilized controls. Shannon index showed reduction in microbial diversity that was mainly due to chemical inputs in the soil. This study showed that these new cropping systems influenced both the bacterial diversity and the physico-chemical characteristics of an ultramafic soil. In addition, this study provides evidence that mineral fertilization can negatively impact bacterial communities and some of their functions linked to biogeochemical cycles.

11.
Int J Phytoremediation ; 20(7): 699-708, 2018 Jun 07.
Article in English | MEDLINE | ID: mdl-29723049

ABSTRACT

Phytomining techniques based on metal-hyperaccumulating plants can be implemented in serpentine quarry wastes for Ni recovery. However, strategies must be developed to overcome the unfavourable plant growth conditions that these substrates present and to optimize Ni yields. In this study, the Ni hyperaccumulators Alyssum serpyllifolium, Alyssum inflatum, and Alyssum bracteatum were evaluated for their Ni phytoextraction efficiency from quarry tailings. Effects of two organic amendments, composted municipal sewage sludge and cow manure, on plant growth and physiological status and Ni removal were determined. Organic amendments were incorporated at two addition rates (5% and 20% w/w). The best-performing hyperaccumulators were A. inflatum and A. serpyllifolium. Organic amendments improved plant biomass production, photosynthetic efficiency and nutrition, but reduced shoot Ni concentrations. However, the stimulation in biomass resulted in significantly enhanced Ni yields. The most promising results were found using low addition rates and after manure incorporation.


Subject(s)
Brassicaceae , Soil Pollutants , Animals , Biodegradation, Environmental , Cattle , Female , Nickel
12.
Sci Total Environ ; 630: 275-286, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29477825

ABSTRACT

Nickel (Ni) agromining of ultramafic soils has been proposed as an eco-friendly option for metal recovery, which can also improve the fertility and quality of these low productive soils. The selection of adequate plant species and the analysis of their performance under the different climatic conditions are of interest for optimising the process and evaluating its full viability. A one-year field experiment was carried out to evaluate the viability of the two Ni-hyperaccumulating Mediterranean species, Alyssum murale and Leptoplax emarginata, for agromining purposes in ultramafic soils under a humid-temperate climate. Field plots of 50 m2 were established and the soil was fertilised with gypsum and inorganic NPK fertilisers prior to cropping. Alyssum murale produced a slightly higher Ni yield than L. emarginata, but Ni bioaccumulation was dependent on the plant phenological stage for both species, being maximal at mid-flowering (4.2 and 3.0 kg Ni ha-1, respectively). In both species, Ni was mainly stored in the leaves, especially in leaves of vegetative stems, but also in flowers and fruits in the case of L. emarginata. The main contributors to Ni yield of A. murale were flowering stems and their leaves, while for L. emarginata they were flowering stems and fruits. Implementing the agromining system increased soil nutrient availability, and modified microbial community structure and metabolic activity (due to fertilisation and plant root activity). The soil bacterial communities were dominated by Proteobacteria, Actinobacteria, Acidobacteria and Chloroflexi, and the agromining crops modified the relative abundance of some phyla (increasing Proteobacteria, Bacteroidetes and Nitrospirae and reducing Acidobacteria and Planctomycetes). Cultivating A. murale increased the densities of total culturable bacteria, while L. emarginata selected Ni-tolerant bacteria in its rhizosphere. In summary, both species showed great potential for their use in Ni agromining systems, although optimising soil and crop management practices could improve the phytoextraction efficiency.

13.
Nat Commun ; 9(1): 342, 2018 01 19.
Article in English | MEDLINE | ID: mdl-29352254

ABSTRACT

The original version of this Article contained an error in the third sentence of the abstract and incorrectly read "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass", rather than the correct "Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 year-1 (95% CI 0.14-0.72, mean period 1988-2010) in above-ground live biomass carbon". This has now been corrected in both the PDF and HTML versions of the Article.

14.
Waste Manag ; 73: 351-359, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29273541

ABSTRACT

Waste incineration bottom ash is considered a secondary resource for valuable trace elements (TE), which is currently neglected in most European countries. Phytomining could potentially recover valuable TE from such waste materials but is still at an exploratory stage with many challenges. The use of bioaugmentation to improve plant growth and TE accumulation of metal-tolerant high biomass plants growing on waste incineration bottom ash was evaluated. Bacterial strains that were previously isolated from rhizosphere, roots and contaminated soil were selected according to their plant growth promoting characteristics and tolerance to the bottom ash substrate. Those selected bacterial strains were tested for their beneficial effects on Nicotiana tabacum and Salix smithiana with regards to phytomining. The rhizobacterial strain Rhodococcus erythropolis P30 enhanced the shoot dry weight of N. tabacum by on average 57% compared to the control plants. Several bacterial inoculants enhanced biomass production and the nutritional status of S. smithiana. Moreover, those bacterial strains previously described to enhance biomass production of N. tabacum and members of the Salicaceae on TE-contaminated soils, also enhanced biomass production of these species on bottom ash. However, bacterial inoculants could not enhance trace element accumulation in plants.


Subject(s)
Agricultural Inoculants , Incineration , Metals/chemistry , Bacteria , Biodegradation, Environmental , Coal Ash , Europe , Refuse Disposal
15.
Nat Commun ; 8(1): 1966, 2017 12 19.
Article in English | MEDLINE | ID: mdl-29259276

ABSTRACT

Less than half of anthropogenic carbon dioxide emissions remain in the atmosphere. While carbon balance models imply large carbon uptake in tropical forests, direct on-the-ground observations are still lacking in Southeast Asia. Here, using long-term plot monitoring records of up to half a century, we find that intact forests in Borneo gained 0.43 Mg C ha-1 per year (95% CI 0.14-0.72, mean period 1988-2010) above-ground live biomass. These results closely match those from African and Amazonian plot networks, suggesting that the world's remaining intact tropical forests are now en masse out-of-equilibrium. Although both pan-tropical and long-term, the sink in remaining intact forests appears vulnerable to climate and land use changes. Across Borneo the 1997-1998 El Niño drought temporarily halted the carbon sink by increasing tree mortality, while fragmentation persistently offset the sink and turned many edge-affected forests into a carbon source to the atmosphere.

16.
Int J Phytoremediation ; 19(10): 955-963, 2017 Oct 03.
Article in English | MEDLINE | ID: mdl-28598213

ABSTRACT

Bioremediation of polluted soils is a promising technique with low environmental impact, which uses soil organisms to degrade soil contaminants. In this study, 19 bacterial strains isolated from a diesel-contaminated soil were screened for their diesel-degrading potential, biosurfactant (BS) production, and biofilm formation abilities, all desirable characteristics when selecting strains for re-inoculation into hydrocarbon-contaminated soils. Diesel-degradation rates were determined in vitro in minimal medium with diesel as the sole carbon source. The capacity to degrade diesel range organics (DROs) of strains SPG23 (Arthobacter sp.) and PF1 (Acinetobacter oleivorans) reached 17-26% of total DROs after 10 days, and 90% for strain GK2 (Acinetobacter calcoaceticus). The amount and rate of alkane degradation decreased significantly with increasing carbon number for strains SPG23 and PF1. Strain GK2, which produced BSs and biofilms, exhibited a greater extent, and faster rate of alkane degradation compared to SPG23 and PF1. Based on the outcomes of degradation experiments, in addition to BS production, biofilm formation capacities, and previous genome characterizations, strain GK2 is a promising candidate for microbial-assisted phytoremediation of diesel-contaminated soils. These results are of particular interest to select suitable strains for bioremediation, not only presenting high diesel-degradation rates, but also other characteristics which could improve rhizosphere colonization.


Subject(s)
Biodegradation, Environmental , Hydrocarbons/metabolism , Soil Microbiology , Gasoline , Soil , Soil Pollutants
17.
Sci Total Environ ; 599-600: 1388-1398, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28531917

ABSTRACT

Gentle remediation options (GRO), i.e. in situ stabilisation, (aided) phytoextraction and (aided) phytostabilisation, were implemented at ten European sites contaminated with trace elements (TE) from various anthropogenic sources: mining, atmospheric fallout, landfill leachates, wood preservatives, dredged-sediments, and dumped wastes. To assess the performance of the GRO options, topsoil was collected from each field trial, potted, and cultivated with lettuce (Lactuca sativa L.) for 48days. Shoot dry weight (DW) yield, photosynthesis efficiency and major element and TE concentrations in the soil pore water and lettuce shoots were measured. GRO implementation had a limited effect on TE concentrations in the soil pore water, although use of multivariate Co-inertia Analysis revealed a clear amelioration effect in phytomanaged soils. Phytomanagement increased shoot DW yield at all industrial and mine sites, whereas in agricultural soils improvements were produced in one out of five sites. Photosynthesis efficiency was less sensitive than changes in shoot biomass and did not discriminate changes in soil conditions. Based on lettuce shoot DW yield, compost amendment followed by phytoextraction yielded better results than phytostabilisation; moreover shoot ionome data proved that, depending on initial soil conditions, recurrent compost application may be required to maintain crop production with common shoot nutrient concentrations.

18.
Sci Total Environ ; 581-582: 676-688, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-28069305

ABSTRACT

Plant growth promoting (PGP) bacterial strains possess different mechanisms to improve plant development under common environmental stresses, and are therefore often used as inoculants in soil phytoremediation processes. The aims of the present work were to study the effects of a collection of plant growth promoting bacterial strains on plant development, antioxidant enzyme activities and nutritional status of Cytisus striatus and/or Lupinus luteus plants a) growing in perlite under non-stress conditions and b) growing in diesel-contaminated soil. For this, two greenhouse experiments were designed. Firstly, C. striatus and L. luteus plants were grown from seeds in perlite, and periodically inoculated with 6 PGP strains, either individually or in pairs. Secondly, L. luteus seedlings were grown in soil samples of the A and B horizons of a Cambisol contaminated with 1.25% (w/w) of diesel and inoculated with best PGP inoculant selected from the first experiment. The results indicated that the PGP strains tested in perlite significantly improved plant growth. Combination treatments provoked better growth of L. luteus than the respective individual strains, while individual inoculation treatments were more effective for C. striatus. L. luteus growth in diesel-contaminated soil was significantly improved in the presence of PGP strains, presenting a 2-fold or higher increase in plant biomass. Inoculants did not provoke significant changes in plant nutritional status, with the exception of a subset of siderophore-producing and P-solubilising bacterial strains that resulted in significantly modification of Fe or P concentrations in leaf tissues. Inoculants did not cause significant changes in enzyme activities in perlite experiments, however they significantly reduced oxidative stress in contaminated soils suggesting an improvement in plant tolerance to diesel. Some strains were applied to non-host plants, indicating a non-specific performance of their plant growth promotion. The use of PGP strains in phytoremediation may help plants to overcome contaminant and other soil stresses, increasing phytoremediation efficiency.


Subject(s)
Agricultural Inoculants , Bacteria , Cytisus/growth & development , Lupinus/growth & development , Soil Microbiology , Biodegradation, Environmental , Soil Pollutants/isolation & purification
19.
Environ Sci Pollut Res Int ; 24(8): 7591-7606, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28120224

ABSTRACT

We evaluated the effect of compost amendment and/or bacterial inoculants on the growth and metal accumulation of Salix caprea (clone BOKU 01 AT-004) and Nicotiana tabacum (in vitro-bred clone NBCu10-8). Soil was collected from an abandoned Pb/Zn mine and rhizobacterial inoculants were previously isolated from plants growing at the same site. Plants were grown in untreated or compost-amended (5% w/w) soil and were inoculated with five rhizobacterial strains. Non-inoculated plants were also established as a control. Compost addition increased the shoot DW yield of N. tabacum but not S. caprea, while it decreased soil metal availability and lowered shoot Cd/Zn concentrations in tobacco plants. Compost amendment enhanced the shoot Cd/Zn removal due to the growth promotion of N. tabacum or to the increase in metal concentration in S. caprea leaves. Bacterial inoculants increased photosynthetic efficiency (particularly in N. tabacum) and sometimes modified soil metal availability, but this did not lead to a significant increase in Cd/Zn removal. Compost amendment was more effective in improving the Cd and Zn phytoextraction efficiency than bioaugmentation.


Subject(s)
Agricultural Inoculants , Cadmium/metabolism , Nicotiana/metabolism , Salix/metabolism , Soil Pollutants/metabolism , Soil , Zinc/metabolism , Biodegradation, Environmental , Biomass , Crops, Agricultural , Plant Leaves/chemistry , Plant Shoots/metabolism , Soil Microbiology
20.
Genome Announc ; 4(3)2016 Jun 23.
Article in English | MEDLINE | ID: mdl-27340073

ABSTRACT

We report the 4.39 Mb draft genome of Bacillus licheniformis GB2, a hydrocarbonoclastic Gram-positive bacterium of the family Bacillaceae, isolated from diesel-contaminated soil at the Ford Motor Company site in Genk, Belgium. Strain GB2 is an effective plant-growth promoter useful for diesel fuel remediation applications based on plant-bacterium associations.

SELECTION OF CITATIONS
SEARCH DETAIL