Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 156(6): 1761-1774, 2019 05.
Article in English | MEDLINE | ID: mdl-30768984

ABSTRACT

BACKGROUND & AIMS: Esophageal adenocarcinoma (EAC) is resistant to standard chemoradiation treatments, and few targeted therapies are available. We used large-scale tissue profiling and pharmacogenetic analyses to identify deregulated signaling pathways in EAC tissues that might be targeted to slow tumor growth or progression. METHODS: We collected 397 biopsy specimens from patients with EAC and nonmalignant Barrett's esophagus (BE), with or without dysplasia. We performed RNA-sequencing analyses and used systems biology approaches to identify pathways that are differentially activated in EAC vs nonmalignant dysplastic tissues; pathway activities were confirmed with immunohistochemistry and quantitative real-time polymerase chain reaction analyses of signaling components in patient tissue samples. Human EAC (FLO-1 and EsoAd1), dysplastic BE (CP-B, CP-C, CP-D), and nondysplastic BE (CP-A) cells were incubated with pharmacologic inhibitors or transfected with small interfering RNAs. We measured effects on proliferation, colony formation, migration, and/or growth of xenograft tumors in nude mice. RESULTS: Comparisons of EAC vs nondysplastic BE tissues showed hyperactivation of transforming growth factor-ß (TGFB) and/or Jun N-terminal kinase (JNK) signaling pathways in more than 80% of EAC samples. Immunohistochemical analyses showed increased nuclear localization of phosphorylated JUN and SMAD proteins in EAC tumor tissues compared with nonmalignant tissues. Genes regulated by the TGFB and JNK pathway were overexpressed specifically in EAC and dysplastic BE. Pharmacologic inhibition or knockdown of TGFB or JNK signaling components in EAC cells (FLO-1 or EsoAd1) significantly reduced cell proliferation, colony formation, cell migration, and/or growth of xenograft tumors in mice in a SMAD4-independent manner. Inhibition of the TGFB pathway in BE cell lines reduced the proliferation of dysplastic, but not nondysplastic, cells. CONCLUSIONS: In a transcriptome analysis of EAC and nondysplastic BE tissues, we found the TGFB and JNK signaling pathways to be hyperactivated in EACs and the genes regulated by these pathways to be overexpressed in EAC and dysplastic BE. Inhibiting these pathways in EAC cells reduces their proliferation, migration, and formation of xenograft tumors. Strategies to block the TGFB and JNK signaling pathways might be developed for treatment of EAC.


Subject(s)
Adenocarcinoma/genetics , Adenocarcinoma/metabolism , Esophageal Neoplasms/genetics , Esophageal Neoplasms/metabolism , MAP Kinase Signaling System/genetics , RNA, Neoplasm/analysis , Transforming Growth Factor beta/metabolism , Animals , Barrett Esophagus/genetics , Barrett Esophagus/metabolism , Barrett Esophagus/pathology , Benzamides/pharmacology , Cell Line, Tumor , Cell Movement , Cell Proliferation , Dioxoles/pharmacology , Female , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Neoplasm Transplantation , Oligonucleotide Array Sequence Analysis , Pharmacogenomic Testing , Proto-Oncogene Proteins c-jun/metabolism , Pyrazoles/pharmacology , Quinolines/pharmacology , Receptors, Transforming Growth Factor beta/antagonists & inhibitors , Smad Proteins/genetics , Smad Proteins/metabolism , Systems Biology , Transcriptome , Transforming Growth Factor beta/antagonists & inhibitors , Transforming Growth Factor beta/genetics , Tumor Stem Cell Assay
2.
Cancer Res ; 76(19): 5628-5633, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27503924

ABSTRACT

Esophageal adenocarcinoma is a deadly cancer with increasing incidence in the United States, but mechanisms underlying pathogenesis are still mostly elusive. In addressing this question, we assessed gene fusion landscapes by comprehensive RNA sequencing (RNAseq) of 55 pretreatment esophageal adenocarcinoma and 49 nonmalignant biopsy tissues from patients undergoing endoscopy for Barrett's esophagus. In this cohort, we identified 21 novel candidate esophageal adenocarcinoma-associated fusions occurring in 3.33% to 11.67% of esophageal adenocarcinomas. Two candidate fusions were selected for validation by PCR and Sanger sequencing in an independent set of pretreatment esophageal adenocarcinoma (N = 115) and nonmalignant (N = 183) biopsy tissues. In particular, we observed RPS6KB1-VMP1 gene fusion as a recurrent event occurring in approximately 10% of esophageal adenocarcinoma cases. Notably, esophageal adenocarcinoma cases harboring RPS6KB1-VMP1 fusions exhibited significantly poorer overall survival as compared with fusion-negative cases. Mechanistic investigations established that the RPS6KB1-VMP1 transcript coded for a fusion protein, which significantly enhanced the growth rate of nondysplastic Barrett's esophagus cells. Compared with the wild-type VMP1 protein, which mediates normal cellular autophagy, RPS6KB1-VMP1 fusion exhibited aberrant subcellular localization and was relatively ineffective in triggering autophagy. Overall, our findings identified RPS6KB1-VMP1 as a genetic fusion that promotes esophageal adenocarcinoma by modulating autophagy-related processes, offering new insights into the molecular pathogenesis of esophageal adenocarcinomas. Cancer Res; 76(19); 5628-33. ©2016 AACR.


Subject(s)
Adenocarcinoma/genetics , Esophageal Neoplasms/genetics , Gene Fusion , Membrane Proteins/genetics , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Sequence Analysis, RNA , Adenocarcinoma/mortality , Adenocarcinoma/pathology , Autophagy , Cell Line, Tumor , Esophageal Neoplasms/mortality , Esophageal Neoplasms/pathology , Humans
3.
Breast Cancer Res ; 13(3): R58, 2011 Jun 09.
Article in English | MEDLINE | ID: mdl-21658254

ABSTRACT

INTRODUCTION: We have previously demonstrated that chondroitin sulfate glycosaminoglycans (CS-GAGs) on breast cancer cells function as P-selectin ligands. This study was performed to identify the carrier proteoglycan (PG) and the sulfotransferase gene involved in synthesis of the surface P-selectin-reactive CS-GAGs in human breast cancer cells with high metastatic capacity, as well as to determine a direct role for CS-GAGs in metastatic spread. METHODS: Quantitative real-time PCR (qRT-PCR) and flow cytometry assays were used to detect the expression of genes involved in the sulfation and presentation of chondroitin in several human breast cancer cell lines. Transient transfection of the human breast cancer cell line MDA-MB-231 with the siRNAs for carbohydrate (chondroitin 4) sulfotransferase-11 (CHST11) and chondroitin sulfate proteoglycan 4 (CSPG4 ) was used to investigate the involvement of these genes in expression of surface P-selectin ligands. The expression of CSPG4 and CHST11 in 15 primary invasive breast cancer clinical specimens was assessed by qRT-PCR. The role of CS-GAGs in metastasis was tested using the 4T1 murine mammary cell line (10 mice per group). RESULTS: The CHST11 gene was highly expressed in aggressive breast cancer cells but significantly less so in less aggressive breast cancer cell lines. A positive correlation was observed between the expression levels of CHST11 and P-selectin binding to cells (P < 0.0001). Blocking the expression of CHST11 with siRNA inhibited CS-A expression and P-selectin binding to MDA-MB-231 cells. The carrier proteoglycan CSPG4 was highly expressed on the aggressive breast cancer cell lines and contributed to the P-selectin binding and CS-A expression. In addition, CSPG4 and CHST11 were over-expressed in tumor-containing clinical tissue specimens compared with normal tissues. Enzymatic removal of tumor-cell surface CS-GAGs significantly inhibited lung colonization of the 4T1 murine mammary cell line (P = 0.0002). CONCLUSIONS: Cell surface P-selectin binding depends on CHST11 gene expression. CSPG4 serves as a P-selectin ligand through its CS chain and participates in P-selectin binding to the highly metastatic breast cancer cells. Removal of CS-GAGs greatly reduces metastatic lung colonization by 4T1 cells. The data strongly indicate that CS-GAGs and their biosynthetic pathways are promising targets for the development of anti-metastatic therapies.


Subject(s)
Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Chondroitin Sulfate Proteoglycans/metabolism , Chondroitin Sulfates/metabolism , Membrane Proteins/metabolism , P-Selectin/metabolism , Sulfotransferases/metabolism , Animals , Breast Neoplasms/genetics , Cell Line, Tumor , Chondroitin Sulfate Proteoglycans/chemistry , Chondroitin Sulfate Proteoglycans/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Ligands , Membrane Proteins/chemistry , Membrane Proteins/genetics , Mice , Mice, Inbred BALB C , Neoplasm Metastasis , P-Selectin/genetics , Proteoglycans/analysis , RNA Interference , RNA, Small Interfering , Sulfotransferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...