Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Membranes (Basel) ; 14(4)2024 Apr 14.
Article in English | MEDLINE | ID: mdl-38668118

ABSTRACT

Pervaporation is a membrane-based process used for the separation of liquid mixtures. As this membrane process is governed by the differences in the sorption and diffusivities of separated components, close boiling mixtures and azeotropic mixtures can effectively be separated. The dehydration of ethanol is the most common application of hydrophilic pervaporation. The pilot scale properties of hydrophilic composite poly(vinyl alcohol) PVA membrane (PERVAPTM 2200) in contact with wet raw bioethanol are presented. The wet raw bioethanol was composed of ethanol (82.4-89.6 wt%), water (5.9-8.5 wt%), methanol (2.3-6.9 wt%), cyclohexane (0.2-2.4 wt%), higher alcohols (0.2-1.3 wt%), and acetaldehyde (0.004-0.030 wt%). All experiments were performed using a SULZER ECO-001 plant equipped with a 1.5 m2 membrane module. The efficiency of the dehydration process (i.e., membrane selectivity, permeate flux, degree of dehydration) was discussed as a function of the following parameters: the feed temperature, the feed composition, and the feed flow rate through the module. It was found that the low feed flow rate influenced the dehydration efficiency as the enthalpy of evaporation caused a high temperature drop in the module (around 25 °C at a feed flow rate equal to 5 kg h-1). The separation coefficient during pervaporation was in the range of 600-1200, depending on the feed composition. The increase in temperature augmented the permeation flux and shortened the time needed to reach the assumed level of dehydration. It was revealed that dehydration by pervaporation using ECO-001 pilot plant is an efficient process, allowing also to investigate the influence of various parameters on the process efficiency.

2.
Materials (Basel) ; 16(7)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37048946

ABSTRACT

In the 21st century, the development of industry and population growth have significantly increased the amount of sewage sludge produced. It is a by-product of wastewater treatment, which requires appropriate management due to biological and chemical hazards, as well as several legal regulations. The pyrolysis of sewage sludge to biochar can become an effective way to neutralise and use waste. Tests were carried out to determine the effect of pyrolysis conditions, such as time and temperature, on the properties and composition of the products obtained and the sorption capacity of the generated biochar. Fourier transform infrared analysis (FTIR) showed that the main components of the produced gas phase were CO2, CO, CH4 and to a lesser extent volatile organic compounds. In tar, compounds of mainly anthropogenic origin were identified using gas chromatography mass spectrometry (GC-MS). The efficiency of obtaining biochars ranged from 44% to 50%. An increase in the pyrolysis temperature resulted in a decreased amount of biochar produced while improving its physicochemical properties. The biochar obtained at high temperatures showed the good adsorption capacity of Cu2+ (26 mg·g-1) and Zn2+ (21 mg·g-1) cations, which indicates that it can compete with similar sorbents. Adsorption of Cu2+ and Zn2+ proceeded according to the pseudo-second-order kinetic model and the Langmuir isotherm model. The biosorbent obtained from sewage sludge can be successfully used for the separation of metal cations from water and technological wastewater or be the basis for producing modified and mixed carbon sorbents.

3.
Materials (Basel) ; 16(7)2023 Mar 31.
Article in English | MEDLINE | ID: mdl-37049088

ABSTRACT

This article concerns research on new sorption materials based on silica-doped activated carbon. A two-stage synthesis involved pyrolysis of plant material impregnated in a water glass solution, followed by hydrothermal activation of the pyrolysate in KOH solution. The resulting composite can be used as a sorbent in drinking water filters. The proposed method of synthesis enables the design of materials with a surface area of approximately 150 m2·g-1, whose chemical composition and structure were confirmed by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS), X-ray diffraction (XRD), thermogravimetry/differential thermal analysis (TG/DTA) and Fourier-transform infrared spectroscopy (FTIR). The sorption properties of the obtained materials were determined relative to copper ions using the batch experiment method. The optimal operating parameters of the obtained materials relative to copper ions are T = 313.15 K, pH = 5, S:L ratio = 4 g·dm-3 and t = 120 min. The research shows that the sorption kinetics of copper ions can be described by a pseudo-second-order model. The plotted copper(II) sorption isotherm clearly indicates the Langmuir model. Under optimal conditions, the maximum sorption of copper ions was 37.74 mg·g-1, which is a satisfactory result and confirms the possibility of using the obtained material in drinking water filters.

4.
Clean Technol Environ Policy ; 25(1): 281-298, 2023.
Article in English | MEDLINE | ID: mdl-36128053

ABSTRACT

The following article explains the current condition of the photovoltaics sector both in Poland and worldwide. Recently, a rapid development of solar energy has been observed in Poland and is estimated that the country now has about 700,000 photovoltaics prosumers. In October 2021, the total photovoltaics power in Poland amounted to nearly 5.7 GW. The calculated technical potential of photovoltaics in Poland is 153.484 PJ (42.634 TWh). This would cover 26.04% of Poland's electricity needs. The main aim of the article is to assess the level of development of the photovoltaic market in Poland, the genesis of its creation, description of the current situation and determination of the development opportunities. As part of the aim, programs supporting the development of solar energy in Poland have been described and the SWOT analysis has also been performed. The strengths of photovoltaics include high social acceptance and low costs of photovoltaics system operation, while opportunities include rapidly increasing technological efficiency and decreasing cost of solar systems. On the other hand, weaknesses include the high costs of photovoltaics systems and the disparities in the amount of solar energy reaching the market during the year, whereas climate change and the coronavirus pandemic are threats. In 2020, PV became an investment hit in the energy sector and an economic driver in Poland. In the difficult time of two lockdowns caused by the global pandemic, domestic PV made a significant contribution to the maintenance of investment processes in the amount of PLN 9.5 billion and provided Poland with 35 thousand jobs. In 2020, 1.5% of the country's electricity came from PV sources. In 2021, it will be 3.5%, and by 2025, solar energy will provide approx. 10% of Poland's electricity. It is worth examining the development of photovoltaics from a broad and long-term perspective. The spectacular development of photovoltaics in Poland is due to hitting the right time window and reducing technology costs, but most of all, it is based on the cooperation of stakeholders and trust in the regulatory environment.

5.
Materials (Basel) ; 15(14)2022 Jul 11.
Article in English | MEDLINE | ID: mdl-35888295

ABSTRACT

This publication presents a series of data of one of the most difficult chemical processes to implement in industrial conditions. Obtaining soda using the Solvay technique is a process with a world volume of about 28 Tg per year. The process is extremely physico-chemically complex and environmentally burdensome. The paper presents information on a multi-component system containing three phases with a chemical reaction. Calculations for such systems and their engineering are very complicated, but the authors show how the results of this work can be applied. This paper also describes modifications of the soda process to minimize the environmental burden and minimize the production input of Na2CO3. The modifications were beneficial in reducing CO2 emissions and increased the efficiency of the soda process, resulting in a measurable financial benefit. At the scale of the plant where the experiment was carried out, this reduction in CO2 emissions amounts to 7.93 Gg per year.

6.
Materials (Basel) ; 14(10)2021 May 14.
Article in English | MEDLINE | ID: mdl-34069285

ABSTRACT

Rapeseed cake biochar was produced by pyrolysis at 973.15 K for 2 h, in anoxic conditions. Porous structure, specific surface area and die composition of waste rapeseed cake were studied. The specific surface area of rapeseed cake biochar was 166.99 m2·g-1, which exceeded most other biochars reported, which made it an attractive material during wastewater treatment. The SEM study of the material demonstrated a large number of pores formed on the cell wall, with a pore volume Vp = 0.08 cm3·g-1. The results indicate lower aromaticity and increased polarity of the tested material. The observed H/C ratio of 0.29 is similar for activated carbons. Furthermore, sorption properties of the obtained carbon material in relation to copper(II), zinc(II) and arsenic(III) ions were also studied. Moreover, the impact of parameters such as: sorption time, temperature, adsorbate concentration, sorbent mass and solution pH on the efficiency of the adsorption process of the studied cations was also examined. Sorption studies revealed that the sorbent can be successfully used for the separation of Cu(II) and Zn(II) from technological wastewaters. Rapeseed cake biochar exhibits superior Cu(II) adsorption capacity (52.2 mg·g-1) with a short equilibrium time (6 h). The experimental data collected show a high selectivity of the obtained carbon material relative to copper(II) and zinc(II) ions in the presence of arsenic(III) ions.

SELECTION OF CITATIONS
SEARCH DETAIL
...