Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 138(1): 34-43, 2021 07 08.
Article in English | MEDLINE | ID: mdl-33657225

ABSTRACT

Decreased cytomegalovirus (CMV)-specific immunity after hematopoietic cell transplantation (HCT) is associated with late CMV reactivation and increased mortality. Whether letermovir prophylaxis-associated reduction in viral exposure influences CMV-specific immune reconstitution is unknown. In a prospective cohort of allogeneic HCT recipients who received letermovir, we compared polyfunctional CMV-specific T-cell responses to those of controls who received PCR-guided preemptive therapy before the introduction of letermovir. Thirteen-color flow cytometry was used to assess T-cell responses at 3 months after HCT following stimulation with CMV immediate early-1 (IE-1) antigen and phosphoprotein 65 (pp65) antigens. Polyfunctionality was characterized by combinatorial polyfunctionality analysis of antigen-specific T-cell subsets. Use of letermovir and reduction of viral exposure were assessed for their association with CMV-specific T-cell immunity. Polyfunctional T-cell responses to IE-1 and pp65 were decreased in letermovir recipients and remained diminished after adjustment for donor CMV serostatus, absolute lymphocyte count, and steroid use. Among letermovir recipients, greater peak CMV DNAemia and increased viral shedding were associated with stronger CD8+ responses to pp65, whereas the CMV shedding rate was associated with greater CD4+ responses to IE-1. In summary, our study provided initial evidence that letermovir may delay CMV-specific cellular reconstitution, possibly related to decreased CMV antigen exposure. Evaluating T-cell polyfunctionality may identify patients at risk for late CMV infection after HCT.


Subject(s)
Acetates/pharmacology , Cytomegalovirus/immunology , Hematopoietic Stem Cell Transplantation , Quinazolines/pharmacology , T-Lymphocytes/immunology , Adult , Aged , Cytomegalovirus/drug effects , Cytomegalovirus Infections/immunology , Cytomegalovirus Infections/virology , Disease-Free Survival , Female , Humans , Linear Models , Lymphocyte Count , Male , Middle Aged , Multivariate Analysis , Phenotype , T-Lymphocytes/drug effects , Virus Activation/drug effects , Young Adult
2.
J Gen Virol ; 101(3): 284-289, 2020 03.
Article in English | MEDLINE | ID: mdl-31958050

ABSTRACT

Infections with human herpesviruses share several molecular characteristics, but the diversified medical outcomes are distinct to viral subfamilies and species. Notably, both clinical and molecular correlates of infection are a challenging field and distinct patterns of virus-host interaction have rarely been defined; this study therefore focuses on the search for virus-specific molecular indicators. As previous studies have demonstrated the impact of herpesvirus infections on changes in host signalling pathways, we illustrate virus-modulated expression levels of individual cellular protein kinases. Current data reveal (i) α-, ß- and γ-herpesvirus-specific patterns of kinase modulation as well as (ii) differential levels of up-/downregulated kinase expression and phosphorylation, which collectively suggest (iii) defined signalling patterns specific for the various viruses (VSS) that may prove useful for defining molecular indicators. Combined, the study confirms the correlation between herpesviral replication and modulation of signalling kinases, possibly exploitable for the in vitro characterization of viral infections.


Subject(s)
Alphaherpesvirinae/metabolism , Betaherpesvirinae/metabolism , Fibroblasts/metabolism , Gammaherpesvirinae/metabolism , Herpesviridae Infections/metabolism , Lymphocytes/metabolism , Protein Kinases/metabolism , Virus Replication/physiology , Cells, Cultured , Herpesviridae Infections/virology , Host-Pathogen Interactions , Humans , Phosphorylation , Signal Transduction/physiology , Up-Regulation
3.
J Virol ; 92(15)2018 08 01.
Article in English | MEDLINE | ID: mdl-29769344

ABSTRACT

Human cytomegalovirus (HCMV) represents a major cause of clinical complications during pregnancy as well as immunosuppression, and the licensing of a protective HCMV vaccine remains an unmet global need. Here, we designed and validated novel Sendai virus (SeV) vectors delivering the T cell immunogens IE-1 and pp65. To enhance vector safety, we used a replication-deficient strain (rdSeV) that infects target cells in a nonproductive manner while retaining viral gene expression. In this study, we explored the impact that transduction with rdSeV has on human dendritic cells (DCs) by comparing it to the parental, replication-competent Sendai virus strain (rcSeV) as well as the poxvirus strain modified vaccinia Ankara (MVA). We found that wild-type SeV is capable of replicating to high titers in DCs while rdSeV infects cells abortively. Due to the higher degree of attenuation, IE-1 and pp65 protein levels mediated by rdSeV after infection of DCs were markedly reduced compared to those of the parental Sendai virus recombinants, but antigen-specific restimulation of T cell clones was not negatively affected by this. Importantly, rdSeV showed reduced cytotoxic effects compared to rcSeV and MVA and was capable of mediating DC maturation as well as secretion of alpha interferon and interleukin-6. Finally, in a challenge model with a murine cytomegalovirus (MCMV) strain carrying an HCMV pp65 peptide, we found that viral replication was restricted if mice were previously vaccinated with rdSeV-pp65. Taken together, these data demonstrate that rdSeV has great potential as a vector system for the delivery of HCMV immunogens.IMPORTANCE HCMV is a highly prevalent betaherpesvirus that establishes lifelong latency after primary infection. Congenital HCMV infection is the most common viral complication in newborns, causing a number of late sequelae ranging from impaired hearing to mental retardation. At the same time, managing HCMV reactivation during immunosuppression remains a major hurdle in posttransplant care. Since options for the treatment of HCMV infection are still limited, the development of a vaccine to confine HCMV-related morbidities is urgently needed. We generated new vaccine candidates in which the main targets of T cell immunity during natural HCMV infection, IE-1 and pp65, are delivered by a replication-deficient, Sendai virus-based vector system. In addition to classical prophylactic vaccine concepts, these vectors could also be used for therapeutic applications, thereby expanding preexisting immunity in high-risk groups such as transplant recipients or for immunotherapy of glioblastomas expressing HCMV antigens.


Subject(s)
Antigens, Viral , Cytomegalovirus Vaccines , Cytomegalovirus , Genetic Vectors , Phosphoproteins , Sendai virus , Transduction, Genetic , Viral Matrix Proteins , Animals , Antigens, Viral/genetics , Antigens, Viral/immunology , Chlorocebus aethiops , Cricetinae , Cytomegalovirus/genetics , Cytomegalovirus/immunology , Cytomegalovirus Vaccines/genetics , Cytomegalovirus Vaccines/immunology , Humans , Mice , Mice, Transgenic , Phosphoproteins/genetics , Phosphoproteins/immunology , Vero Cells , Viral Matrix Proteins/genetics , Viral Matrix Proteins/immunology
4.
Sci Rep ; 8(1): 1474, 2018 01 24.
Article in English | MEDLINE | ID: mdl-29367743

ABSTRACT

Human Cytomegalovirus (HCMV) remains a major health burden and the development of a vaccine is a global priority. We developed new viral vectors delivering the T cell immunogens IE-1 and pp65 based on Adenovirus 19a/64 (Ad19a/64), a member of subgroup D. In this ex vivo study, the novel vectors were compared side by side to Ad5 or modified Vaccinia Ankara (MVA) strains expressing the same transgenes. We found that unlike Ad5, Ad19a/64 vectors readily transduce a broad panel of immune cells, including monocytes, T cells, NK cells and monocyte-derived dendritic cells (moDCs). Both Ad19a/64- and MVA-transduced moDCs efficiently restimulated IE-1 or pp65-specific T cells but MVA induced a higher amount of cytotoxicity in this cell type. Ad5 and Ad19 induced upregulation of CD86 and HLA-DR in moDCs whereas expression of CD80 and CD83 was largely unaltered. By contrast, MVA transduction led to downregulation of all markers. Taken together, our data demonstrate that Ad19a/64 is a promising vector for the delivery of HCMV immunogens since it transduces dendritic cells with an efficiency that is comparable to MVA, but cytotoxicity and interference with dendritic cell maturation are less pronounced.


Subject(s)
Adenoviruses, Human/genetics , Antigens, Viral/immunology , Cytomegalovirus Infections/immunology , Cytomegalovirus/immunology , Genetic Vectors/administration & dosage , T-Lymphocytes/immunology , Vaccinia virus/genetics , Adult , Cytomegalovirus/drug effects , Cytomegalovirus Infections/drug therapy , Cytomegalovirus Infections/virology , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/virology , HeLa Cells , Humans , T-Lymphocytes/drug effects , T-Lymphocytes/virology , Tropism , Virus Replication
5.
BMC Immunol ; 18(1): 14, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28270111

ABSTRACT

BACKGROUND: In healthy individuals, Cytomegalovirus (CMV) infection is efficiently controlled by CMV-specific cell-mediated immunity (CMI). Functional impairment of CMI in immunocompromized individuals however can lead to uncontrolled CMV replication and severe clinical complications. Close monitoring of CMV-specific CMI is therefore clinically relevant and might allow a reliable prognosis of CMV disease as well as assist personalized therapeutic decisions. METHODS: Objective of this work was the optimization and technical validation of an IFN-γ ELISpot assay for a standardized, sensitive and reliable quantification of CMV-reactive effector cells. T-activated® immunodominant CMV IE-1 and pp65 proteins were used as stimulants. All basic assay parameters and reagents were tested and optimized to establish a user-friendly protocol and maximize the signal-to-noise ratio of the ELISpot assay. RESULTS: Optimized and standardized ELISpot revealed low intra-assay, inter-assay and inter-operator variability (coefficient of variation CV below 22%) and CV inter-site was lower than 40%. Good assay linearity was obtained between 6 × 104 and 2 × 105 PBMC per well upon stimulation with T-activated® IE-1 (R2 = 0.97) and pp65 (R2 = 0.99) antigens. Remarkably, stimulation of peripheral blood mononuclear cells (PBMC) with T-activated® IE-1 and pp65 proteins resulted in the activation of a broad range of CMV-reactive effector cells, including CD3+CD4+ (Th), CD3+CD8+ (CTL), CD3-CD56+ (NK) and CD3+CD56+ (NKT-like) cells. Accordingly, the optimized IFN-γ ELISpot assay revealed very high sensitivity (97%) in a cohort of 45 healthy donors, of which 32 were CMV IgG-seropositive. CONCLUSION: The combined use of T-activated® IE-1 and pp65 proteins for the stimulation of PBMC with the optimized IFN-γ ELISpot assay represents a highly standardized, valuable tool to monitor the functionality of CMV-specific CMI with great sensitivity and reliability.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Cytomegalovirus Infections/diagnosis , Cytomegalovirus/physiology , Enzyme-Linked Immunospot Assay/methods , Killer Cells, Natural/immunology , Natural Killer T-Cells/immunology , Adult , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Cytomegalovirus Infections/immunology , Cytotoxicity, Immunologic , Female , Humans , Immediate-Early Proteins/immunology , Immunity, Cellular , Interferon-gamma/metabolism , Killer Cells, Natural/virology , Male , Middle Aged , Monitoring, Immunologic , Natural Killer T-Cells/virology , Observer Variation , Phosphoproteins/immunology , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Viral Matrix Proteins/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL