Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 928: 172260, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38583622

ABSTRACT

Novel means are needed to identify individuals and subpopulations susceptible to and afflicted by neurodegenerative diseases (NDDs). This study aimed to utilize geographic distribution of heavy metal sources and sinks to investigate a potential human health risk of developing NDDs. Known or hypothesized environmental factors driving disease prevalence of Alzheimer's Disease (AD), Parkinson's Disease (PD), and amyotrophic lateral sclerosis (ALS) are heavy metals, including arsenic (As), cadmium (Cd), manganese (Mn) and mercury (Hg). Lead (Pb) has been associated with AD and ALS. Analyzable mediums of human exposure to heavy metals (i.e., toxic metals and metalloids), or proxies thereof, include infant blood, topsoil, sewage sludge, and well water. U.S. concentrations of heavy metals in topsoil, sewage sludge, well water, and infant blood were mapped and compared to prevalence rates of major NDDs. Data from federal and state agencies (i.e., CDC, EPA, and the US Geological Survey) on heavy metal concentrations, age distribution, and NDD prevalence rates were geographically represented and statistically analyzed to quantify possible correlations. Aside from an expected significant association between NDD prevalence and age (p < 0.0001), we found significant associations between the prevalence of the sum of three major NDDs with: Pb in topsoil (p = 0.0433); Cd (p < 0.0001) and Pb (p < 0.0001) in sewage sludge; Pb in infant blood (p < 0.0001). Concentrations in sewage sludge of Cd and Pb were significantly correlated with NDD prevalence rates with an odds ratio of 2.91 (2.04, 4.225 95%CI) and 4.084 (3.14, 5.312 95%CI), respectively. The presence of toxic metals in the U.S. environment in multiple matrices, including sewage sludge, was found to be significantly associated with NDD prevalence. This is the first use of sewage sludge as an environmental proxy matrix to infer risk of developing NDDs.


Subject(s)
Environmental Exposure , Metals, Heavy , Neurodegenerative Diseases , Metals, Heavy/analysis , Humans , United States/epidemiology , Environmental Exposure/statistics & numerical data , Prevalence , Neurodegenerative Diseases/epidemiology , Neurodegenerative Diseases/chemically induced , Environmental Monitoring
SELECTION OF CITATIONS
SEARCH DETAIL