Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 80(5): 136, 2023 May 02.
Article in English | MEDLINE | ID: mdl-37131079

ABSTRACT

Influenza A virus (IAV) is a respiratory virus that causes epidemics and pandemics. Knowledge of IAV RNA secondary structure in vivo is crucial for a better understanding of virus biology. Moreover, it is a fundament for the development of new RNA-targeting antivirals. Chemical RNA mapping using selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) coupled with Mutational Profiling (MaP) allows for the thorough examination of secondary structures in low-abundance RNAs in their biological context. So far, the method has been used for analyzing the RNA secondary structures of several viruses including SARS-CoV-2 in virio and in cellulo. Here, we used SHAPE-MaP and dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) for genome-wide secondary structure analysis of viral RNA (vRNA) of the pandemic influenza A/California/04/2009 (H1N1) strain in both in virio and in cellulo environments. Experimental data allowed the prediction of the secondary structures of all eight vRNA segments in virio and, for the first time, the structures of vRNA5, 7, and 8 in cellulo. We conducted a comprehensive structural analysis of the proposed vRNA structures to reveal the motifs predicted with the highest accuracy. We also performed a base-pairs conservation analysis of the predicted vRNA structures and revealed many highly conserved vRNA motifs among the IAVs. The structural motifs presented herein are potential candidates for new IAV antiviral strategies.


Subject(s)
COVID-19 , Influenza A Virus, H1N1 Subtype , Influenza A virus , Humans , Influenza A Virus, H1N1 Subtype/genetics , SARS-CoV-2/genetics , Influenza A virus/genetics , RNA, Viral/genetics , Genomics
2.
Int J Mol Sci ; 24(2)2023 Jan 08.
Article in English | MEDLINE | ID: mdl-36674746

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is responsible for the COVID-19 pandemic, whereas the influenza A virus (IAV) causes seasonal epidemics and occasional pandemics. Both viruses lead to widespread infection and death. SARS-CoV-2 and the influenza virus are RNA viruses. The SARS-CoV-2 genome is an approximately 30 kb, positive sense, 5' capped single-stranded RNA molecule. The influenza A virus genome possesses eight single-stranded negative-sense segments. The RNA secondary structure in the untranslated and coding regions is crucial in the viral replication cycle. The secondary structure within the RNA of SARS-CoV-2 and the influenza virus has been intensively studied. Because the whole of the SARS-CoV-2 and influenza virus replication cycles are dependent on RNA with no DNA intermediate, the RNA is a natural and promising target for the development of inhibitors. There are a lot of RNA-targeting strategies for regulating pathogenic RNA, such as small interfering RNA for RNA interference, antisense oligonucleotides, catalytic nucleic acids, and small molecules. In this review, we summarized the knowledge about the inhibition of SARS-CoV-2 and influenza A virus propagation by targeting their RNA secondary structure.


Subject(s)
COVID-19 , Influenza A virus , Orthomyxoviridae , Humans , SARS-CoV-2 , Influenza A virus/genetics , Nucleotide Motifs , Pandemics , RNA , RNA, Viral/genetics , RNA, Viral/chemistry
3.
Mol Ther Nucleic Acids ; 29: 64-74, 2022 Sep 13.
Article in English | MEDLINE | ID: mdl-35784013

ABSTRACT

The naturally occurring structure and biological functions of RNA are correlated, which includes hammerhead ribozymes. We proposed new variants of hammerhead ribozymes targeting conserved structural motifs of segment 5 of influenza A virus (IAV) (+)RNA. The variants carry structural and chemical modifications aiming to improve the RNA cleavage activity of ribozymes. We introduced an additional hairpin motif and attempted to select ribozyme-target pairs with sequence features that enable the potential formation of the trans-Hoogsteen interactions that are present in full-length, highly active hammerhead ribozymes. We placed structurally defined guanosine analogs into the ribozyme catalytic core. Herein, the significantly improved synthesis of 2'-deoxy-2'-fluoroarabinoguanosine derivatives is described. The most potent hammerhead ribozymes were applied to chimeric short hairpin RNA (shRNA)-ribozyme plasmid constructs to improve the antiviral activity of the two components. The modified hammerhead ribozymes showed moderate cleavage activity. Treatment of IAV-infected Madin-Darby canine kidney (MDCK) cells with the plasmid constructs resulted in significant inhibition of virus replication. Real-time PCR analysis revealed a significant (80%-88%) reduction in viral RNA when plasmids carriers were used. A focus formation assay (FFA) for chimeric plasmids showed inhibition of virus replication by 1.6-1.7 log10 units, whereas the use of plasmids carrying ribozymes or shRNAs alone resulted in lower inhibition.

4.
J Mol Biol ; 434(18): 167632, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35588868

ABSTRACT

RNA folding free energy change parameters are widely used to predict RNA secondary structure and to design RNA sequences. These parameters include terms for the folding free energies of helices and loops. Although the full set of parameters has only been traditionally available for the four common bases and backbone, it is well known that covalent modifications of nucleotides are widespread in natural RNAs. Covalent modifications are also widely used in engineered sequences. We recently derived a full set of nearest neighbor terms for RNA that includes N6-methyladenosine (m6A). In this work, we test the model using 98 optical melting experiments, matching duplexes with or without N6-methylation of A. Most experiments place RRACH, the consensus site of N6-methylation, in a variety of contexts, including helices, bulge loops, internal loops, dangling ends, and terminal mismatches. For matched sets of experiments that include either A or m6A in the same context, we find that the parameters for m6A are as accurate as those for A. Across all experiments, the root mean squared deviation between estimated and experimental free energy changes is 0.67 kcal/mol. We used the new experimental data to refine the set of nearest neighbor parameter terms for m6A. These parameters enable prediction of RNA secondary structures including m6A, which can be used to model how N6-methylation of A affects RNA structure.


Subject(s)
Adenosine , RNA Folding , RNA , Adenosine/analogs & derivatives , Adenosine/chemistry , Entropy , RNA/chemistry
5.
Nat Commun ; 13(1): 1271, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277476

ABSTRACT

There is increasing interest in the roles of covalently modified nucleotides in RNA. There has been, however, an inability to account for modifications in secondary structure prediction because of a lack of software and thermodynamic parameters. We report the solution for these issues for N6-methyladenosine (m6A), allowing secondary structure prediction for an alphabet of A, C, G, U, and m6A. The RNAstructure software now works with user-defined nucleotide alphabets of any size. We also report a set of nearest neighbor parameters for helices and loops containing m6A, using experiments. Interestingly, N6-methylation decreases folding stability for adenosines in the middle of a helix, has little effect on folding stability for adenosines at the ends of helices, and increases folding stability for unpaired adenosines stacked on a helix. We demonstrate predictions for an N6-methylation-activated protein recognition site from MALAT1 and human transcriptome-wide effects of N6-methylation on the probability of adenosine being buried in a helix.


Subject(s)
RNA , Software , Adenosine/analogs & derivatives , Base Sequence , Humans , Nucleic Acid Conformation , RNA/chemistry , Thermodynamics
6.
Int J Mol Sci ; 23(5)2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35269600

ABSTRACT

Influenza A virus (IAV) is a member of the single-stranded RNA (ssRNA) family of viruses. The most recent global pandemic caused by the SARS-CoV-2 virus has shown the major threat that RNA viruses can pose to humanity. In comparison, influenza has an even higher pandemic potential as a result of its high rate of mutations within its relatively short (<13 kbp) genome, as well as its capability to undergo genetic reassortment. In light of this threat, and the fact that RNA structure is connected to a broad range of known biological functions, deeper investigation of viral RNA (vRNA) structures is of high interest. Here, for the first time, we propose a secondary structure for segment 8 vRNA (vRNA8) of A/California/04/2009 (H1N1) formed in the presence of cellular and viral components. This structure shows similarities with prior in vitro experiments. Additionally, we determined the location of several well-defined, conserved structural motifs of vRNA8 within IAV strains with possible functionality. These RNA motifs appear to fold independently of regional nucleoprotein (NP)-binding affinity, but a low or uneven distribution of NP in each motif region is noted. This research also highlights several accessible sites for oligonucleotide tools and small molecules in vRNA8 in a cellular environment that might be a target for influenza A virus inhibition on the RNA level.


Subject(s)
Gene Expression Regulation, Viral , Genome, Viral/genetics , Influenza A Virus, H1N1 Subtype/genetics , Nucleic Acid Conformation , RNA, Viral/chemistry , Animals , Base Sequence , Dogs , Humans , Influenza A Virus, H1N1 Subtype/metabolism , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Models, Molecular , Nucleotide Motifs/genetics , RNA Folding , RNA, Viral/genetics , Viral Proteins/genetics , Viral Proteins/metabolism
7.
Viruses ; 14(2)2022 02 04.
Article in English | MEDLINE | ID: mdl-35215915

ABSTRACT

SARS-CoV-2 belongs to the Coronavirinae family. Like other coronaviruses, SARS-CoV-2 is enveloped and possesses a positive-sense, single-stranded RNA genome of ~30 kb. Genomic RNA is used as the template for replication and transcription. During these processes, positive-sense genomic RNA (gRNA) and subgenomic RNAs (sgRNAs) are created. Several studies presented the importance of the genomic RNA secondary structure in SARS-CoV-2 replication. However, the structure of sgRNAs has remained largely unsolved so far. In this study, we probed the sgRNA M model of SARS-CoV-2 in vitro. The presented model molecule includes 5'UTR and a coding sequence of gene M. This is the first experimentally informed secondary structure model of sgRNA M, which presents features likely to be important in sgRNA M function. The knowledge of sgRNA M structure provides insights to better understand virus biology and could be used for designing new therapeutics.


Subject(s)
Genome, Viral , RNA, Viral/chemistry , SARS-CoV-2/genetics , 5' Untranslated Regions , COVID-19/virology , Genomics , Humans , Open Reading Frames , RNA, Viral/genetics , Transcription, Genetic
8.
RNA ; 28(4): 508-522, 2022 04.
Article in English | MEDLINE | ID: mdl-34983822

ABSTRACT

Influenza A kills hundreds of thousands of people globally every year and has the potential to generate more severe pandemics. Influenza A's RNA genome and transcriptome provide many potential therapeutic targets. Here, nuclear magnetic resonance (NMR) experiments suggest that one such target could be a hairpin loop of 8 nucleotides in a pseudoknot that sequesters a 3' splice site in canonical pairs until a conformational change releases it into a dynamic 2 × 2-nt internal loop. NMR experiments reveal that the hairpin loop is dynamic and able to bind oligonucleotides as short as pentamers. A 3D NMR structure of the complex contains 4 and likely 5 bp between pentamer and loop. Moreover, a hairpin sequence was discovered that mimics the equilibrium of the influenza hairpin between its structure in the pseudoknot and upon release of the splice site. Oligonucleotide binding shifts the equilibrium completely to the hairpin secondary structure required for pseudoknot folding. The results suggest this hairpin can be used to screen for compounds that stabilize the pseudoknot and potentially reduce splicing.


Subject(s)
Influenza, Human , RNA Splice Sites , Base Sequence , Humans , Influenza, Human/genetics , Magnetic Resonance Spectroscopy , Nucleic Acid Conformation , Oligonucleotides , RNA Splice Sites/genetics , RNA, Messenger/metabolism
9.
J Biol Chem ; 297(6): 101245, 2021 12.
Article in English | MEDLINE | ID: mdl-34688660

ABSTRACT

RNA structure in the influenza A virus (IAV) has been the focus of several studies that have shown connections between conserved secondary structure motifs and their biological function in the virus replication cycle. Questions have arisen on how to best recognize and understand the pandemic properties of IAV strains from an RNA perspective, but determination of the RNA secondary structure has been challenging. Herein, we used chemical mapping to determine the secondary structure of segment 8 viral RNA (vRNA) of the pandemic A/California/04/2009 (H1N1) strain of IAV. Additionally, this long, naturally occurring RNA served as a model to evaluate RNA mapping with 4-thiouridine (4sU) crosslinking. We explored 4-thiouridine as a probe of nucleotides in close proximity, through its incorporation into newly transcribed RNA and subsequent photoactivation. RNA secondary structural features both universal to type A strains and unique to the A/California/04/2009 (H1N1) strain were recognized. 4sU mapping confirmed and facilitated RNA structure prediction, according to several rules: 4sU photocross-linking forms efficiently in the double-stranded region of RNA with some flexibility, in the ends of helices, and across bulges and loops when their structural mobility is permitted. This method highlighted three-dimensional properties of segment 8 vRNA secondary structure motifs and allowed to propose several long-range three-dimensional interactions. 4sU mapping combined with chemical mapping and bioinformatic analysis could be used to enhance the RNA structure determination as well as recognition of target regions for antisense strategies or viral RNA detection.


Subject(s)
Cross-Linking Reagents/chemistry , Influenza A virus/chemistry , Influenza, Human/virology , RNA, Viral/chemistry , Thiouridine/chemistry , Base Pairing , Base Sequence , Humans , Nucleic Acid Conformation
10.
Viruses ; 13(3)2021 03 22.
Article in English | MEDLINE | ID: mdl-33810157

ABSTRACT

The functionality of RNA is fully dependent on its structure. For the influenza A virus (IAV), there are confirmed structural motifs mediating processes which are important for the viral replication cycle, including genome assembly and viral packaging. Although the RNA of strains originating from distant IAV subtypes might fold differently, some structural motifs are conserved, and thus, are functionally important. Nowadays, NGS-based structure modeling is a source of new in vivo data helping to understand RNA biology. However, for accurate modeling of in vivo RNA structures, these high-throughput methods should be supported with other analyses facilitating data interpretation. In vitro RNA structural models complement such approaches and offer RNA structures based on experimental data obtained in a simplified environment, which are needed for proper optimization and analysis. Herein, we present the secondary structure of the influenza A virus segment 5 vRNA of A/California/04/2009 (H1N1) strain, based on experimental data from DMS chemical mapping and SHAPE using NMIA, supported by base-pairing probability calculations and bioinformatic analyses. A comparison of the available vRNA5 structures among distant IAV strains revealed that a number of motifs present in the A/California/04/2009 (H1N1) vRNA5 model are highly conserved despite sequence differences, located within previously identified packaging signals, and the formation of which in in virio conditions has been confirmed. These results support functional roles of the RNA secondary structure motifs, which may serve as candidates for universal RNA-targeting inhibitory methods.


Subject(s)
Influenza A Virus, H1N1 Subtype/genetics , RNA, Viral/chemistry , Genome, Viral , Nucleic Acid Conformation , Virus Assembly
11.
Pathogens ; 9(12)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287259

ABSTRACT

Influenza virus has the potential for being one of the deadliest viruses, as we know from the pandemic's history. The influenza virus, with a constantly mutating genome, is becoming resistant to existing antiviral drugs and vaccines. For that reason, there is an urgent need for developing new therapeutics and therapies. Despite the fact that a new generation of universal vaccines or anti-influenza drugs are being developed, the perfect remedy has still not been found. In this review, various strategies for using nanoparticles (NPs) to defeat influenza virus infections are presented. Several categories of NP applications are highlighted: NPs as immuno-inducing vaccines, NPs used in gene silencing approaches, bare NPs influencing influenza virus life cycle and the use of NPs for drug delivery. This rapidly growing field of anti-influenza methods based on nanotechnology is very promising. Although profound research must be conducted to fully understand and control the potential side effects of the new generation of antivirals, the presented and discussed studies show that nanotechnology methods can effectively induce the immune responses or inhibit influenza virus activity both in vitro and in vivo. Moreover, with its variety of modification possibilities, nanotechnology has great potential for applications and may be helpful not only in anti-influenza but also in the general antiviral approaches.

12.
Pathogens ; 9(11)2020 Nov 07.
Article in English | MEDLINE | ID: mdl-33171815

ABSTRACT

Influenza is an important research subject around the world because of its threat to humanity. Influenza A virus (IAV) causes seasonal epidemics and sporadic, but dangerous pandemics. A rapid antigen changes and recombination of the viral RNA genome contribute to the reduced effectiveness of vaccination and anti-influenza drugs. Hence, there is a necessity to develop new antiviral drugs and strategies to limit the influenza spread. IAV is a single-stranded negative sense RNA virus with a genome (viral RNA-vRNA) consisting of eight segments. Segments within influenza virion are assembled into viral ribonucleoprotein (vRNP) complexes that are independent transcription-replication units. Each step in the influenza life cycle is regulated by the RNA and is dependent on its interplay and dynamics. Therefore, viral RNA can be a proper target to design novel therapeutics. Here, we briefly described examples of anti-influenza strategies based on the antisense oligonucleotide (ASO), small interfering RNA (siRNA), microRNA (miRNA) and catalytic nucleic acids. In particular we focused on the vRNA structure-function relationship as well as presented the advantages of using secondary structure information in predicting therapeutic targets and the potential future of this field.

13.
Pathogens ; 9(11)2020 Nov 15.
Article in English | MEDLINE | ID: mdl-33203084

ABSTRACT

The influenza A virus is a human pathogen causing respiratory infections. The ability of this virus to trigger seasonal epidemics and sporadic pandemics is a result of its high genetic variability, leading to the ineffectiveness of vaccinations and current therapies. The source of this variability is the accumulation of mutations in viral genes and reassortment enabled by its segmented genome. The latter process can induce major changes and the production of new strains with pandemic potential. However, not all genetic combinations are tolerated and lead to the assembly of complete infectious virions. Reports have shown that viral RNA segments co-segregate in particular circumstances. This tendency is a consequence of the complex and selective genome packaging process, which takes place in the final stages of the viral replication cycle. It has been shown that genome packaging is governed by RNA-RNA interactions. Intersegment contacts create a network, characterized by the presence of common and strain-specific interaction sites. Recent studies have revealed certain RNA regions, and conserved secondary structure motifs within them, which may play functional roles in virion assembly. Growing knowledge on RNA structure and interactions facilitates our understanding of the appearance of new genome variants, and may allow for the prediction of potential reassortment outcomes and the emergence of new strains in the future.

14.
J Biol Chem ; 295(9): 2568-2569, 2020 02 28.
Article in English | MEDLINE | ID: mdl-32111719

ABSTRACT

Riboswitches alter gene expression in response to ligand binding, coupling sensing and regulatory functions to help bacteria respond to their environment. The structural determinants of ligand binding in the prequeuosine (7-aminomethyl-7-deazaguanine, preQ1) bacterial riboswitches have been studied, but the functional consequences of structural perturbations are less known. A new article combining biophysical and cell-based readouts of 15 mutants of the preQ1-II riboswitch from Lactobacillus rhamnosus demonstrates that ligand binding does not ensure successful gene regulation, providing new insights into these shapeshifting sequences.


Subject(s)
Bacteria/genetics , Lacticaseibacillus rhamnosus/genetics , Riboswitch/genetics , Bacteria/drug effects , Biophysical Phenomena/genetics , Gene Expression Regulation/drug effects , Lacticaseibacillus rhamnosus/drug effects , Ligands , Mutation/genetics , Nucleic Acid Conformation/drug effects , Pyrimidinones/pharmacology , Pyrroles/pharmacology , Riboswitch/drug effects
15.
Mol Ther Nucleic Acids ; 19: 627-642, 2020 Mar 06.
Article in English | MEDLINE | ID: mdl-31945726

ABSTRACT

The influenza A virus is a human pathogen that poses a serious public health threat due to rapid antigen changes and emergence of new, highly pathogenic strains with the potential to become easily transmitted in the human population. The viral genome is encoded by eight RNA segments, and all stages of the replication cycle are dependent on RNA. In this study, we designed small interfering RNA (siRNA) targeting influenza segment 5 nucleoprotein (NP) mRNA structural motifs that encode important functions. The new criterion for choosing the siRNA target was the prediction of accessible regions based on the secondary structure of segment 5 (+)RNA. This design led to siRNAs that significantly inhibit influenza virus type A replication in Madin-Darby canine kidney (MDCK) cells. Additionally, chemical modifications with the potential to improve siRNA properties were introduced and systematically validated in MDCK cells against the virus. A substantial and maximum inhibitory effect was achieved at concentrations as low as 8 nM. The inhibition of viral replication reached approximately 90% for the best siRNA variants. Additionally, selected siRNAs were compared with antisense oligonucleotides targeting the same regions; this revealed that effectiveness depends on both the target accessibility and oligonucleotide antiviral strategy. Our new approach of target-site preselection based on segment 5 (+)RNA secondary structure led to effective viral inhibition and a better understanding of the impact of RNA structural motifs on the influenza replication cycle.

16.
Sci Rep ; 9(1): 3801, 2019 03 07.
Article in English | MEDLINE | ID: mdl-30846846

ABSTRACT

Influenza virus causes seasonal epidemics and dangerous pandemic outbreaks. It is a single stranded (-)RNA virus with a segmented genome. Eight segments of genomic viral RNA (vRNA) form the virion, which are then transcribed and replicated in host cells. The secondary structure of vRNA is an important regulator of virus biology and can be a target for finding new therapeutics. In this paper, the secondary structure of segment 5 vRNA is determined based on chemical mapping data, free energy minimization and structure-sequence conservation analysis for type A influenza. The revealed secondary structure has circular folding with a previously reported panhandle motif and distinct novel domains. Conservations of base pairs is 87% on average with many structural motifs that are highly conserved. Isoenergetic microarray mapping was used to additionally validate secondary structure and to discover regions that easy bind short oligonucleotides. Antisense oligonucleotides, which were designed based on modeled secondary structure and microarray mapping, inhibit influenza A virus proliferation in MDCK cells. The most potent oligonucleotides lowered virus titer by ~90%. These results define universal for type A structured regions that could be important for virus function, as well as new targets for antisense therapeutics.


Subject(s)
Genome, Viral , Influenza A virus/genetics , Oligonucleotides, Antisense , Protein Structure, Secondary
17.
Bioconjug Chem ; 30(3): 931-943, 2019 03 20.
Article in English | MEDLINE | ID: mdl-30721034

ABSTRACT

RNAs play critical roles in diverse catalytic and regulatory biological processes and are emerging as important disease biomarkers and therapeutic targets. Thus, developing chemical compounds for targeting any desired RNA structures has great potential in biomedical applications. The viral and cellular RNA sequence and structure databases lay the groundwork for developing RNA-binding chemical ligands through the recognition of both RNA sequence and RNA structure. Influenza A virion consists of eight segments of negative-strand viral RNA (vRNA), all of which contain a highly conserved panhandle duplex structure formed between the first 13 nucleotides at the 5' end and the last 12 nucleotides at the 3' end. Here, we report our binding and cell culture anti-influenza assays of a short 10-mer chemically modified double-stranded RNA (dsRNA)-binding peptide nucleic acid (PNA) designed to bind to the panhandle duplex structure through novel major-groove PNA·RNA2 triplex formation. We demonstrated that incorporation of chemically modified PNA residues thio-pseudoisocytosine (L) and guanidine-modified 5-methyl cytosine (Q) previously developed by us facilitates the sequence-specific recognition of Watson-Crick G-C and C-G pairs, respectively, at physiologically relevant conditions. Significantly, the chemically modified dsRNA-binding PNA (dbPNA) shows selective binding to the dsRNA region in panhandle structure over a single-stranded RNA (ssRNA) and a dsDNA containing the same sequence. The panhandle structure is not accessible to traditional antisense DNA or RNA with a similar length. Conjugation of the dbPNA with an aminosugar neamine enhances the cellular uptake. We observed that 2-5 µM dbPNA-neamine conjugate results in a significant reduction of viral replication. In addition, the 10-mer dbPNA inhibits innate immune receptor RIG-I binding to panhandle structure and thus RIG-I ATPase activity. These findings would provide the foundation for developing novel dbPNAs for the detection of influenza viral RNAs and therapeutics with optimal antiviral and immunomodulatory activities.


Subject(s)
Orthomyxoviridae/drug effects , Peptide Nucleic Acids/chemistry , Peptide Nucleic Acids/pharmacology , RNA, Double-Stranded/metabolism , RNA, Viral/drug effects , Virus Replication/drug effects , Animals , Circular Dichroism , Dogs , Madin Darby Canine Kidney Cells , Native Polyacrylamide Gel Electrophoresis , Nucleic Acid Conformation , Orthomyxoviridae/genetics , Orthomyxoviridae/physiology , RNA, Double-Stranded/chemistry
18.
Sci Rep ; 8(1): 13023, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158667

ABSTRACT

The occurrence of triplexes in vivo has been well documented and is determined by the presence of long homopurine-homopyrimidine tracts. The formation of these structures is the result of conformational changes that occur in the duplex, which allow the binding of a third strand within the major groove of the helix. Formation of these noncanonical forms by introducing synthetic triplex-forming oligonucleotides (TFOs) into the cell may have applications in molecular biology, diagnostics and therapy. This study focused on the formation of RNA triplexes as well as their thermal stability and biological potential in the HeLa cell line. Thermodynamics studies revealed that the incorporation of multiple locked nucleic acid (LNA) and 2-thiouridine (2-thioU) residues increased the stability of RNA triplexes. These data suggest that the number and position of the modified nucleotides within TFOs significantly stabilize the formed structures. Moreover, specificity of the interactions between the modified TFOs and the RNA hairpin was characterized using electrophoretic mobility-shift assay (EMSA), and triplex dissociation constants have been also determined. Finally, through quantitative analysis of GFP expression, the triplex structures were shown to regulate GFP gene silencing. Together, our data provide a first glimpse into the thermodynamic, structural and biological properties of LNA- and 2-thioU modified RNA triplexes.


Subject(s)
Biological Products/chemistry , HeLa Cells/drug effects , Nucleic Acid Hybridization , RNA/chemistry , RNA/genetics , Thermodynamics , Biological Products/metabolism , Humans , Molecular Structure , RNA/metabolism , RNA Stability
19.
Sci Rep ; 7(1): 15041, 2017 11 08.
Article in English | MEDLINE | ID: mdl-29118447

ABSTRACT

Influenza A virus is a threat for humans due to seasonal epidemics and occasional pandemics. This virus can generate new strains that are dangerous through nucleotide/amino acid changes or through segmental recombination of the viral RNA genome. It is important to gain wider knowledge about influenza virus RNA to create new strategies for drugs that will inhibit its spread. Here, we present the experimentally determined secondary structure of the influenza segment 5 (+)RNA. Two RNAs were studied: the full-length segment 5 (+)RNA and a shorter construct containing only the coding region. Chemical mapping data combined with thermodynamic energy minimization were used in secondary structure prediction. Sequence/structure analysis showed that the determined secondary structure of segment 5 (+)RNA is mostly conserved between influenza virus type A strains. Microarray mapping and RNase H cleavage identified accessible sites for oligonucleotides in the revealed secondary structure of segment 5 (+)RNA. Antisense oligonucleotides were designed based on the secondary structure model and tested against influenza virus in cell culture. Inhibition of influenza virus proliferation was noticed, identifying good targets for antisense strategies. Effective target sites fall within two domains, which are conserved in sequence/structure indicating their importance to the virus.


Subject(s)
Influenza A Virus, H5N1 Subtype/genetics , Nucleic Acid Conformation , RNA, Viral/chemistry , Virus Replication/genetics , Animals , Antiviral Agents/therapeutic use , Base Sequence , Dogs , Humans , Influenza A Virus, H5N1 Subtype/drug effects , Influenza, Human/prevention & control , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Models, Molecular , Oligonucleotides, Antisense/genetics , Open Reading Frames/genetics , RNA, Viral/genetics , RNA, Viral/metabolism , Ribonuclease H/metabolism , Virus Replication/drug effects
20.
Anal Chim Acta ; 990: 157-167, 2017 Oct 16.
Article in English | MEDLINE | ID: mdl-29029739

ABSTRACT

Intracellular sensing using fluorescent molecular beacons is a potentially useful strategy for real-time, in vivo monitoring of important cellular events. This work is focused on evaluation of pyrene excimer signaling molecular beacons (MBs) for the monitoring of pH changes in vitro as well as inside living cells. The recognition element in our MB called pHSO (pH-sensitive oligonucleotide) is the loop enclosing cytosine-rich fragment that is able to form i-motif structure in a specific pH range. However, alteration of a sequence of the 6 base pairs containing stem of MB allowed the design of pHSO probes that exhibited different dynamic pH range and possessed slightly different transition midpoint between i-motif and open loop configuration. Moreover, this conformational transition was accompanied by spectral changes showing developed probes different pyrene excimer-monomer emission ratio triggered by pH changes. The potential of these MBs for intracellular pH sensing is demonstrated on the example of HeLa cells line.


Subject(s)
Cytosine/chemistry , Hydrogen-Ion Concentration , Molecular Probes/chemistry , Oligonucleotides/chemistry , Base Pairing , Fluorescent Dyes , HeLa Cells , Humans , Oligonucleotide Probes
SELECTION OF CITATIONS
SEARCH DETAIL
...