Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 May 10.
Article in English | MEDLINE | ID: mdl-38727714

ABSTRACT

Neuropeptides are ancient signaling molecules in animals but only few peptide receptors are known outside bilaterians. Cnidarians possess a large number of G protein-coupled receptors (GPCRs) - the most common receptors of bilaterian neuropeptides - but most of these remain orphan with no known ligands. We searched for neuropeptides in the sea anemone Nematostella vectensis and created a library of 64 peptides derived from 33 precursors. In a large-scale pharmacological screen with these peptides and 161 N. vectensis GPCRs, we identified 31 receptors specifically activated by 1 to 3 of 14 peptides. Mapping GPCR and neuropeptide expression to single-cell sequencing data revealed how cnidarian tissues are extensively connected by multilayer peptidergic networks. Phylogenetic analysis identified no direct orthology to bilaterian peptidergic systems and supports the independent expansion of neuropeptide signaling in cnidarians from a few ancestral peptide-receptor pairs.


Subject(s)
Neuropeptides , Phylogeny , Receptors, G-Protein-Coupled , Sea Anemones , Animals , Sea Anemones/genetics , Neuropeptides/metabolism , Neuropeptides/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/genetics , Signal Transduction
2.
PLoS Biol ; 21(9): e3002300, 2023 09.
Article in English | MEDLINE | ID: mdl-37713439

ABSTRACT

Overlapping genes are widely prevalent; however, their expression and consequences are poorly understood. Here, we describe and functionally characterize a novel zyx-1 overlapping gene, azyx-1, with distinct regulatory functions in Caenorhabditis elegans. We observed conservation of alternative open reading frames (ORFs) overlapping the 5' region of zyxin family members in several animal species, and find shared sites of azyx-1 and zyxin proteoform expression in C. elegans. In line with a standard ribosome scanning model, our results support cis regulation of zyx-1 long isoform(s) by upstream initiating azyx-1a. Moreover, we report on a rare observation of trans regulation of zyx-1 by azyx-1, with evidence of increased ZYX-1 upon azyx-1 overexpression. Our results suggest a dual role for azyx-1 in influencing zyx-1 proteoform heterogeneity and highlight its impact on C. elegans muscular integrity and locomotion.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/metabolism , Locomotion/genetics , Muscles/metabolism , Protein Isoforms/metabolism , Zyxin/genetics , Zyxin/metabolism
3.
Biogerontology ; 24(2): 225-233, 2023 04.
Article in English | MEDLINE | ID: mdl-36662373

ABSTRACT

Understanding how we can age healthily is a challenge at the heart of biogerontological interest. Whereas myriad genes are known to affect the lifespan of model organisms, effects of such interventions on healthspan-the period of life where an animal is considered healthy, rather than merely alive-are less clear. To understand relationships between life- and healthspan, in recent years several platforms were developed with the purpose of assessing both readouts simultaneously. We here relied on one such platform, the WorMotel, to study effects of adulthood-restricted knock-down of 130 Caenorhabditis elegans genes on the locomotive health of the animals along their lifespans. We found that knock-down of six genes affected healthspan while lifespan remained unchanged. For two of these, F26A3.4 and chn-1, knock-down resulted in an improvement of healthspan. In follow-up experiments we showed that knockdown of F26A3.4 indeed improves locomotive health and muscle structure at old age.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Gene Knockdown Techniques , Longevity/physiology , Caenorhabditis elegans Proteins/genetics
4.
Sci Rep ; 11(1): 19996, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620971

ABSTRACT

Deep seabed mining is potentially imminent in the Clarion Clipperton Fracture Zone (CCFZ; northeast Pacific). Seabed collectors will remove polymetallic nodules and the surrounding surface sediments, both inhabited by meiofauna, along their path. To determine potential impacts of polymetallic nodule removal, we investigated the importance of nodule presence for the abundance, composition and diversity of sediment meiofauna, and evaluated the existence and composition of nodule crevice meiofauna in the Global Sea Mineral Resources (GSR) exploration contract area. Nodule-free and nodule-rich sediments displayed high biodiversity with many singletons and doubletons, potentially representing rare taxa. Nodule presence negatively influenced sediment meiofaunal abundances but did not markedly affect taxonomic composition or diversity. This is the first report on CCFZ nodule crevice meiofauna, whose abundance related positively to nodule dimensions. Though dominated by the same taxa, nodules and sediments differed regarding the taxonomic and trophic composition of the meio- and nematofauna. Nevertheless, there were no taxa endemic to the nodule crevices and nodule crevice meiofauna added only little to total small-scale (~ cm) meiofaunal abundance and diversity. We formulated environmental management recommendations at the contract area and regional (CCFZ) scale related to sampling effort, set-aside preservation and monitoring areas, and potential rehabilitation measures.

5.
J Neurosci ; 40(31): 6018-6034, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32576621

ABSTRACT

Aversive learning is fundamental for animals to increase chances of survival. In addition to classical neurotransmitters, neuropeptides have emerged to modulate such complex behaviors. Among them, neuropeptide Y (NPY) is well known to promote aversive memory acquisition in mammals. Here we identify an NPY/neuropeptide F (NPF)-related neuropeptide system in Caenorhabditis elegans and show that this FLP-34/NPR-11 system is required for learning negative associations, a process that is reminiscent of NPY signaling in mammals. The Caenorhabditis elegans NPY/NPF ortholog FLP-34 displays conserved structural hallmarks of bilaterian-wide NPY/NPF neuropeptides. We show that it is required for aversive olfactory learning after pairing diacetyl with the absence of food, but not for appetitive olfactory learning in response to butanone. To mediate diacetyl learning and thus integrate the aversive food context with the diacetyl odor, FLP-34 is released from serotonergic neurons and signals through its evolutionarily conserved NPY/NPF GPCR, NPR-11, in downstream AIA interneurons. NPR-11 activation in the AIA integration center results in avoidance of a previously attractive stimulus. This study opens perspectives for a deeper understanding of stress conditions in which aversive learning results in excessive avoidance.SIGNIFICANCE STATEMENT Aversive learning evolved early in evolution to promote avoidance of dangerous and stressful situations. In addition to classical neurotransmitters, neuropeptides are emerging as modulators of complex behaviors, including learning and memory. Here, we identified the evolutionary ortholog of neuropeptide Y/neuropeptide F in the nematode Caenorhabditis elegans, and we discovered that it is required for olfactory aversive learning. In addition, we elucidated the neural circuit underlying this avoidance behavior, and we discovered a novel coordinated action of Caenorhabditis elegans neuropeptide Y/neuropeptide F and serotonin that could aid in our understanding of the molecular mechanisms underlying stress disorders in which excessive avoidance results in maladaptive behaviors.


Subject(s)
Association Learning/physiology , Neuropeptide Y/physiology , Neuropeptides/physiology , Serotonergic Neurons/physiology , Smell/physiology , Animals , Appetitive Behavior , Avoidance Learning/drug effects , Butanones/pharmacology , Caenorhabditis elegans , Diacetyl/pharmacology , Dose-Response Relationship, Drug , Female , Gene Expression Regulation , Locomotion , Male , Neuropeptide Y/genetics , Neuropeptides/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...