Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cryobiology ; 114: 104855, 2024 03.
Article in English | MEDLINE | ID: mdl-38301952

ABSTRACT

The Symbiodinium genus is ancestral among other Symbiodiniaceae lineages with species that are both symbiotic and free living. Changes in marine ecosystems threaten their existence and crucial ecological roles. Cryopreservation offers an avenue for their long-term storage for future habitat restoration after coral bleaching. In our previous study we demonstrated that high salinity treatments of Symbiodiniaceae isolates led to changes in their fatty acid (FA) profiles and higher cell viabilities after cryopreservation. In this study, we investigated the role of increased salinity on FA production and the genes involved in FA biosynthesis and degradation pathways during the cryopreservation of Symbiodinium pilosum. Overall, there was a twofold increase in mass of FAs produced by S. pilosum after being cultured in medium with increased salinity (54 parts per thousand; ppt). Dimethyl sulfoxide (Me2SO) led to a ninefold increase of FAs in standard salinity (SS) treatment, compared to a fivefold increase in increased salinity (IS) treatments. The mass of the FA classes returned to baseline during recovery. Transcriptomic analyses showed an acyl carrier protein gene was significantly upregulated after Me2SO treatment in the SS cultures. Cytochrome P450 reductase genes were significantly down regulated after Me2SO addition in SS treatment preventing FA degradation. These changes in the expression of FA biosynthesis and degradation genes contributed to more FAs in SS treated isolates. Understanding how increased salinity changes FA production and the roles of specific genes in regulating FA pathways will help improve current freezing protocols for Symbiodiniaceae and other marine microalgae.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Dimethyl Sulfoxide/pharmacology , Cryopreservation/methods , Fatty Acids , Salinity , Ecosystem , Anthozoa/physiology , Dinoflagellida/genetics
2.
PeerJ ; 11: e14885, 2023.
Article in English | MEDLINE | ID: mdl-36874975

ABSTRACT

Many strains of Symbiodiniaceae have been isolated and their genetics, taxonomy, and metabolite production studied. Maintaining these cultures requires careful and regular sub-culturing that is costly with a high risk of species contamination or loss. Cryopreservation is a viable alternative for their long-term storage; however, there is uncertainty as to whether cryopreservation impacts the photosynthetic performance of Symbiodiniaceae. We investigated the growth rates and photosynthetic efficiency of two species, Breviolum psygmophilum and Effrenium voratum before and after cryopreservation. Rapid light curves (RLCs) produced using Pulse Amplitude Modulated (PAM) fluorometry were used to generate detailed information on the characteristics of photosystem II (PSII). The maximum electron transport rate (ETRmax) and the quantum yield (Fv/Fm) of the control (non-cryopreserved) and cryopreserved culture isolates were assessed across the growth cycle. The non-cryopreserved isolate of B. psygmophilum had a higher quantum yield than the cryopreserved isolate from day 12 to day 24, whereas there were no differences from day 28 to the late stationary phase. There were no significant differences in ETRmax. No significant differences were observed in quantum yield or ETRmax between the control and cryopreserved E. voratum isolates. The ability of cryopreserved strains to recover and regain their photosynthetic efficiency after freezing demonstrates the utility of this method for the long-term storage of these and other Symbiodiniaceae species.


Subject(s)
Cryopreservation , Dinoflagellida , Photosynthesis , Electron Transport , Cell Cycle
SELECTION OF CITATIONS
SEARCH DETAIL