Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 129
Filter
1.
Semin Musculoskelet Radiol ; 28(1): 14-25, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38330967

ABSTRACT

Currently no disease-modifying osteoarthritis drug has been approved for the treatment of osteoarthritis (OA) that can reverse, hold, or slow the progression of structural damage of OA-affected joints. The reasons for failure are manifold and include the heterogeneity of structural disease of the OA joint at trial inclusion, and the sensitivity of biomarkers used to measure a potential treatment effect.This article discusses the role and potential of different imaging biomarkers in OA research. We review the current role of radiography, as well as advances in quantitative three-dimensional morphological cartilage assessment and semiquantitative whole-organ assessment of OA. Although magnetic resonance imaging has evolved as the leading imaging method in OA research, recent developments in computed tomography are also discussed briefly. Finally, we address the experience from the Foundation for the National Institutes of Health Biomarker Consortium biomarker qualification study and the future role of artificial intelligence.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Artificial Intelligence , Osteoarthritis/diagnostic imaging , Radiography , Magnetic Resonance Imaging/methods , Biomarkers , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology
3.
Radiology ; 310(1): e230764, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38165245

ABSTRACT

While musculoskeletal imaging volumes are increasing, there is a relative shortage of subspecialized musculoskeletal radiologists to interpret the studies. Will artificial intelligence (AI) be the solution? For AI to be the solution, the wide implementation of AI-supported data acquisition methods in clinical practice requires establishing trusted and reliable results. This implementation will demand close collaboration between core AI researchers and clinical radiologists. Upon successful clinical implementation, a wide variety of AI-based tools can improve the musculoskeletal radiologist's workflow by triaging imaging examinations, helping with image interpretation, and decreasing the reporting time. Additional AI applications may also be helpful for business, education, and research purposes if successfully integrated into the daily practice of musculoskeletal radiology. The question is not whether AI will replace radiologists, but rather how musculoskeletal radiologists can take advantage of AI to enhance their expert capabilities.


Subject(s)
Artificial Intelligence , Commerce , Humans , Radionuclide Imaging , Physical Examination , Radiologists
5.
J Biomech ; 163: 111960, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38290304

ABSTRACT

Hamstring strain injuries (HSI) are a common occurrence in athletics and complicated by limited prognostic indicators and high rates of reinjury. Assessment of injury characteristics at the time of injury (TOI) may be used to manage athlete expectations for time to return to sport (RTS) and mitigate reinjury risk. Magnetic resonance imaging (MRI) is routinely used in soft tissue injury management, but its prognostic value for HSI is widely debated. Recent advancements in musculoskeletal MRI, such as diffusion tensor imaging (DTI), have allowed for quantitative measures of muscle microstructure assessment. The purpose of this study was to determine the association of TOI MRI-based measures, including the British Athletic Muscle Injury Classification (BAMIC) system, edema volume, and DTI metrics, with time to RTS and reinjury incidence. Negative binomial regressions and generalized estimating equations were used to determine relationships between imaging measures and time to RTS and reinjury, respectively. Twenty-six index injuries were observed, with five recorded reinjuries. A significant association was not detected between BAMIC score and edema volume at TOI with days to RTS (p-values ≥ 0.15) or reinjury (p-values ≥ 0.13). Similarly, a significant association between DTI metrics and days to RTS was not detected (p-values ≥ 0.11). Although diffusivity metrics are expected to increase following injury, decreased values were observed in those who reinjured (mean diffusivity, p = 0.016; radial diffusivity, p = 0.02; principal effective diffusivity eigenvalues, p-values = 0.007-0.057). Additional work to further understand the directional relationship observed between DTI metrics and reinjury status and the influence of external factors is warranted.


Subject(s)
Athletic Injuries , Reinjuries , Soft Tissue Injuries , Humans , Diffusion Tensor Imaging , Return to Sport , Incidence , Athletic Injuries/diagnostic imaging , Edema/diagnostic imaging
6.
Skeletal Radiol ; 53(7): 1369-1379, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38267763

ABSTRACT

OBJECTIVE: To identify the region of interest (ROI) to represent injury and observe between-limb diffusion tensor imaging (DTI) microstructural differences in muscle following hamstring strain injury. MATERIALS AND METHODS: Participants who sustained a hamstring strain injury prospectively underwent 3T-MRI of bilateral thighs using T1, T2, and diffusion-weighted imaging at time of injury (TOI), return to sport (RTS), and 12 weeks after RTS (12wks). ROIs were using the hyperintense region on a T2-weighted sequence: edema, focused edema, and primary muscle injured excluding edema (no edema). Linear mixed-effects models were used to compare diffusion parameters between ROIs and timepoints and limbs and timepoints. RESULTS: Twenty-four participants (29 injuries) were included. A significant ROI-by-timepoint interaction was detected for all diffusivity measures. The edema and focused edema ROIs demonstrated increased diffusion at TOI compared to RTS for all diffusivity measures (p-values < 0.006), except λ1 (p-values = 0.058-0.12), and compared to 12wks (p-values < 0.02). In the no edema ROI, differences in diffusivity measures were not observed (p-values > 0.82). At TOI, no edema ROI diffusivity measures were lower than the edema ROI (p-values < 0.001) but not at RTS or 12wks (p-values > 0.69). A significant limb-by-timepoint interaction was detected for all diffusivity measures with increased diffusion in the involved limb at TOI (p-values < 0.001) but not at RTS or 12wks (p-values > 0.42). Significant differences in fractional anisotropy over time or between limbs were not detected. CONCLUSION: Hyperintensity on T2-weighted imaging used to define the injured region holds promise in describing muscle microstructure following hamstring strain injury by demonstrating between-limb differences at TOI but not at follow-up timepoints.


Subject(s)
Athletic Injuries , Diffusion Tensor Imaging , Hamstring Muscles , Sprains and Strains , Humans , Diffusion Tensor Imaging/methods , Male , Hamstring Muscles/diagnostic imaging , Hamstring Muscles/injuries , Female , Young Adult , Prospective Studies , Sprains and Strains/diagnostic imaging , Athletic Injuries/diagnostic imaging , Return to Sport , Adolescent
7.
J Magn Reson Imaging ; 59(4): 1312-1324, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37610269

ABSTRACT

BACKGROUND: Multiparameter characterization using MR fingerprinting (MRF) can quantify multiple relaxation parameters of intervertebral disc (IVD) simultaneously. These parameters may vary by age and sex. PURPOSE: To investigate age- and sex-related differences in the relaxation parameters of the IVD of the lumbar spine using a multiparameter MRF technique. STUDY TYPE: Prospective. SUBJECTS: 17 healthy subjects (8 male; mean age = 34 ± 10 years, range 20-60 years). FIELD STRENGTH/SEQUENCE: 3D-MRF sequence for simultaneous acquisition of proton density, T1 , T2 , and T1ρ maps at 3.0T. ASSESSMENT: Global mean T1 , T2 , and T1ρ of all lumbar IVDs and mean T1 , T2 , and T1ρ of each individual IVD (L1-L5) were measured. Gray level co-occurrence matrix was used to quantify textural features (median, contrast, correlation, energy, and homogeneity) from T1 , T2 , and T1ρ maps. STATISTICAL TESTS: Spearman rank correlations (R) evaluated the association between age and T1 , T2 , and T1ρ of IVD. Mann-Whitney U-tests evaluated differences between males and females in T1 , T2 , and T1ρ of IVD. Statistical significance was defined as P-value <0.05. RESULTS: There was a significant negative correlation between age and global mean values of all IVDs for T1 (R = -0.637), T2 (R = -0.509), and T1ρ (R = -0.726). For individual IVDs, there was a significant negative correlation between age and mean T1 at all IVD segments (R range = -0.530 to -0.708), between age and mean T2 at L2-L3, L3-L4, and L4-L5 (R range = -0.493 to 0.640), and between age and mean T1ρ at all segments except L1-L2 (R range = -0.632 to -0.763). There were no significant differences between sexes in global mean T1 , T2, and T1ρ (P-value = 0.23-0.76) The texture features with the highest significant correlations with age for all IVDs were global T1ρ mean (R = -0.726), T1 energy (R = -0.681), and T1 contrast (R = 0.709). CONCLUSION: This study showed that the 3D-MRF technique has potential to characterize age-related differences in T1 , T2, or T1ρ of IVD in healthy subjects. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Female , Humans , Male , Young Adult , Adult , Middle Aged , Intervertebral Disc Degeneration/diagnostic imaging , Prospective Studies , Intervertebral Disc/diagnostic imaging , Magnetic Resonance Imaging/methods , Lumbar Vertebrae/diagnostic imaging
8.
Skeletal Radiol ; 53(4): 637-648, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37728629

ABSTRACT

OBJECTIVE: To determine if MRI-based radiomics from hamstring muscles are related to injury and if the features could be used to perform a time to return to sport (RTS) classification. We hypothesize that radiomics from hamstring muscles, especially T2-weighted and diffusion tensor imaging-based features, are related to injury and can be used for RTS classification. SUBJECTS AND METHODS: MRI data from 32 athletes at the University of Wisconsin-Madison that sustained a hamstring strain injury were collected. Diffusion tensor imaging and T1- and T2-weighted images were processed, and diffusion maps were calculated. Radiomics features were extracted from the four hamstring muscles in each limb and for each MRI modality, individually. Feature selection was performed and multiple support vector classifiers were cross-validated to differentiate between involved and uninvolved limbs and perform binary (≤ or > 25 days) and multiclass (< 14 vs. 14-42 vs. > 42 days) classification of RTS. RESULT: The combination of radiomics features from all diffusion tensor imaging and T2-weighted images provided the most accurate differentiation between involved and uninvolved limbs (AUC ≈ 0.84 ± 0.16). For the binary RTS classification, the combination of all extracted radiomics offered the most accurate classification (AUC ≈ 0.95 ± 0.15). While for the multiclass RTS classification, the combination of features from all the diffusion tensor imaging maps provided the most accurate classification (weighted one vs. rest AUC ≈ 0.81 ± 0.16). CONCLUSION: This pilot study demonstrated that radiomics features from hamstring muscles are related to injury and have the potential to predict RTS.


Subject(s)
Diffusion Tensor Imaging , Hamstring Muscles , Humans , Pilot Projects , Hamstring Muscles/diagnostic imaging , Hamstring Muscles/injuries , Return to Sport , Radiomics , Magnetic Resonance Imaging/methods , Retrospective Studies
9.
J Magn Reson Imaging ; 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37877751

ABSTRACT

BACKGROUND: There is limited understanding of differences in the composition and structure of ligaments between healthy males and females, and individuals of different ages. Females present higher risk for ligament injuries than males and there are conflicting reports on its cause. This study looks into T1ρ parameters for an explanation as it relates to proteoglycan, collagen, and water content in these tissues. PURPOSE: To investigate gender-related and age-related differences in T1ρ parameters in knee joint ligaments in healthy volunteers using a T1ρ -prepared zero echo-time (ZTE)-based pointwise-encoding time-reduction with radial acquisition (T1ρ -PETRA) sequence. STUDY TYPE: Prospective. POPULATION: The study group consisted of 22 healthy subjects (11 females, ages: 41 ± 18 years, and 11 males, ages: 41 ± 14 years) with no known inflammation, trauma, or pain in the knee joint. FIELD STRENGTH/SEQUENCE: A T1ρ -prepared 3D-PETRA sequence was used to acquire fat-suppressed images with varying spin-lock lengths (TSLs) of the knee joint at 3T. ASSESSMENT: Monoexponential, biexponential, and stretched-exponential 3D-PETRA-T1ρ parameters were measured in the anterior cruciate ligament (ACL), posterior cruciate ligament (PCL), and patellar tendon (PT) by manually drawing ROIs over the entirety of the tissues. STATISTICAL TESTS: Mann-Whitney U-tests were used to compare 3D-PETRA-T1ρ parameters in the ACL, PCL, and PT between males and females. Spearman correlation coefficients were used to determine the association between age and T1ρ parameters. Statistical significance was defined as P < 0.05. RESULTS: Significant correlations with age were found the three ligaments with most of the measured T1ρ parameters (rs = 0.28-0.74) with the exception of the short fraction in the PCL (P = 0.18), and the short relaxation time in the ACL (P = 0.58) and in the PCL (P = 0.14). DATA CONCLUSION: 3D-PETRA-T1ρ can detect age-related differences in monoexponential, biexponential, and stretched-exponential T1ρ parameters in three ligaments of healthy volunteers, which are thought to be related to changes in tissue composition and structure during the aging process. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 1.

10.
J Magn Reson Imaging ; 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37885320

ABSTRACT

BACKGROUND: Three-dimensional MR fingerprinting (3D-MRF) techniques have been recently described for simultaneous multiparametric mapping of knee cartilage. However, investigation of repeatability remains limited. PURPOSE: To assess the intra-day and inter-day repeatabilities of knee cartilage T1 , T2 , and T1ρ maps using a 3D-MRF sequence for simultaneous measurement. STUDY TYPE: Prospective. SUBJECTS: Fourteen healthy subjects (35.4 ± 9.3 years, eight males), scanned on Day 1 and Day 7. FIELD STRENGTH/SEQUENCE: 3 T/3D-MRF, T1 , T2 , and T1ρ maps. ASSESSMENT: The acquisition of 3D-MRF cartilage (simultaneous acquisition of T1 , T2 , and T1ρ maps) were acquired using a dictionary pattern-matching approach. Conventional cartilage T1 , T2 , and T1ρ maps were acquired using variable flip angles and a modified 3D-Turbo-Flash sequence with different echo and spin-lock times, respectively, and were fitted using mono-exponential models. Each sequence was acquired on Day 1 and Day 7 with two scans on each day. STATISTICAL TESTS: The mean and SD for cartilage T1 , T2 , and T1ρ were calculated in five manually segmented regions of interest (ROIs), including lateral femur, lateral tibia, medial femur, medial tibia, and patella cartilages. Intra-subject and inter-subject repeatabilities were assessed using coefficient of variation (CV) and intra-class correlation coefficient (ICC), respectively, on the same day and among different days. Regression and Bland-Altman analysis were performed to compare maps between the conventional and 3D-MRF sequences. RESULTS: The CV in all ROIs was lower than 7.4%, 8.4%, and 7.5% and the ICC was higher than 0.56, 0.51, and 0.52 for cartilage T1 , T2 , and T1ρ , respectively. The MRF results had a good agreement with the conventional methods with a linear regression slope >0.61 and R2 > 0.59. CONCLUSION: The 3D-MRF sequence had high intra-subject and inter-subject repeatabilities for simultaneously measuring knee cartilage T1 , T2 , and T1ρ with good agreement with conventional sequences. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.

11.
J Vasc Interv Radiol ; 34(12): 2180-2189.e3, 2023 12.
Article in English | MEDLINE | ID: mdl-37640104

ABSTRACT

PURPOSE: To characterize the safety, efficacy, and potential role of genicular artery embolization (GAE) as a disease-modifying treatment for symptomatic knee osteoarthritis (OA). MATERIALS AND METHODS: This is an interim analysis of a prospective, single-arm clinical trial of patients with symptomatic knee OA who failed conservative therapy for greater than 3 months. Sixteen patients who underwent GAE using 250-µm microspheres and had at least 1 month of follow-up were included. Six patients completed the 12-month follow-up, and 10 patients remain enrolled. Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) was evaluated at baseline and at 1, 3, and 12 months. Serum and plasma samples were collected for biomarker analysis. The primary end point was the percentage of patients who achieved the minimal clinically important difference (MCID) for WOMAC pain score at 12 months. Baseline and follow-up outcomes were analyzed using the Wilcoxon matched-pairs signed-rank test. RESULTS: Technical success of the procedure was 100%, with no major adverse events. The MCID was achieved in 5 of the 6 (83%) patients at 12 months. The mean WOMAC pain score decreased from 8.6 ± 2.7 at baseline to 4.9 ± 2.7 (P = .001), 4.4 ± 2.8 (P < .001), and 4.7 ± 2.7 (P = .094) at 1, 3, and 12 months, respectively. There was a statistically significant decrease in nerve growth factor (NGF) levels at 12 months. The remaining 8 biomarkers showed no significant change at 12 months. CONCLUSIONS: GAE is a safe and efficacious treatment for symptomatic knee OA. Decreased NGF levels after GAE may contribute to pain reduction and slowing of cartilage degeneration.


Subject(s)
Osteoarthritis, Knee , Humans , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/therapy , Prospective Studies , Pilot Projects , Nerve Growth Factor/therapeutic use , Treatment Outcome , Pain
12.
NMR Biomed ; 36(11): e4999, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37409683

ABSTRACT

The objective of the current study was to investigate age- and gender-related differences in lumbar intervertebral disk (IVD) strain with the use of static mechanical loading and continuous three-dimensional (3D) golden-angle radial sparse parallel (GRASP) MRI. A continuous 3D-GRASP stack-of-stars trajectory of the lumbar spine was performed on a 3-T scanner with static mechanical loading. Compressed sensing reconstruction, motion deformation maps, and Lagrangian strain maps during loading and recovery in the X-, Y-, and Z-directions were calculated for segmented IVD segments from L1/L2 to L5/S1. Mean IVD height was measured at rest. Spearman coefficients were used to evaluate the associations between age and global IVD height and global IVD strain. Mann-Whitney tests were used to compare global IVD height and global IVD strain in males and females. The prospective study enrolled 20 healthy human volunteers (10 males, 10 females; age 34.6 ± 11.4 [mean ± SD], range 22-56 years). Significant increases in compressive strain were observed with age, as evidenced by negative correlations between age and global IVD strain during loading (ρ = -0.76, p = 0.0046) and recovery (ρ = -0.68, p = 0.0251) in the loading X-direction. There was no significant correlation between age and global IVD height, global IVD strain during loading and recovery in the Y-direction, and global IVD strain during loading and recovery in the Z-direction. There were no significant differences between males and females in global IVD height and global IVD strain during loading and recovery in the X-, Y-, and Z-directions. It was concluded that our study demonstrated the significant role aging plays in internal dynamic strains in the lumbar IVD during loading and recovery. Older healthy individuals have reduced IVD stiffness and greater IVD compression during static mechanical loading of the lumbar spine. The GRASP-MRI technique demonstrates the feasibility to identify changes in IVD mechanical properties with early IVD degeneration due to aging.


Subject(s)
Intervertebral Disc Degeneration , Intervertebral Disc , Male , Female , Humans , Young Adult , Adult , Middle Aged , Sex Factors , Prospective Studies , Intervertebral Disc/diagnostic imaging , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/pathology , Magnetic Resonance Imaging/methods , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/pathology
13.
Front Radiol ; 3: 1151258, 2023.
Article in English | MEDLINE | ID: mdl-37492381

ABSTRACT

Introduction: Femoroacetabular Impingement (FAI) is a hip pathology characterized by impingement of the femoral head-neck junction against the acetabular rim, due to abnormalities in bone morphology. FAI is normally diagnosed by manual evaluation of morphologic features on magnetic resonance imaging (MRI). In this study, we assess, for the first time, the feasibility of using radiomics to detect FAI by automatically extracting quantitative features from images. Material and methods: 17 patients diagnosed with monolateral FAI underwent pre-surgical MR imaging, including a 3D Dixon sequence of the pelvis. An expert radiologist drew regions of interest on the water-only Dixon images outlining femur and acetabulum in both impingement (IJ) and healthy joints (HJ). 182 radiomic features were extracted for each hip. The dataset numerosity was increased by 60 times with an ad-hoc data augmentation tool. Features were subdivided by type and region in 24 subsets. For each, a univariate ANOVA F-value analysis was applied to find the 5 features most correlated with IJ based on p-value, for a total of 48 subsets. For each subset, a K-nearest neighbor model was trained to differentiate between IJ and HJ using the values of the radiomic features in the subset as input. The training was repeated 100 times, randomly subdividing the data with 75%/25% training/testing. Results: The texture-based gray level features yielded the highest prediction max accuracy (0.972) with the smallest subset of features. This suggests that the gray image values are more homogeneously distributed in the HJ in comparison to IJ, which could be due to stress-related inflammation resulting from impingement. Conclusions: We showed that radiomics can automatically distinguish IJ from HJ using water-only Dixon MRI. To our knowledge, this is the first application of radiomics for FAI diagnosis. We reported an accuracy greater than 97%, which is higher than the 90% accuracy for detecting FAI reported for standard diagnostic tests (90%). Our proposed radiomic analysis could be combined with methods for automated joint segmentation to rapidly identify patients with FAI, avoiding time-consuming radiological measurements of bone morphology.

14.
J Magn Reson Imaging ; 58(1): 44-60, 2023 07.
Article in English | MEDLINE | ID: mdl-37010113

ABSTRACT

Osteoarthritis (OA) is a widely occurring degenerative joint disease that is severely debilitating and causes significant socioeconomic burdens to society. Magnetic resonance imaging (MRI) is the preferred imaging modality for the morphological evaluation of cartilage due to its excellent soft tissue contrast and high spatial resolution. However, its utilization typically involves subjective qualitative assessment of cartilage. Compositional MRI, which refers to the quantitative characterization of cartilage using a variety of MRI methods, can provide important information regarding underlying compositional and ultrastructural changes that occur during early OA. Cartilage compositional MRI could serve as early imaging biomarkers for the objective evaluation of cartilage and help drive diagnostics, disease characterization, and response to novel therapies. This review will summarize current and ongoing state-of-the-art cartilage compositional MRI techniques and highlight emerging methods for cartilage compositional MRI including MR fingerprinting, compressed sensing, multiexponential relaxometry, improved and robust radio-frequency pulse sequences, and deep learning-based acquisition, reconstruction, and segmentation. The review will also briefly discuss the current challenges and future directions for adopting these emerging cartilage compositional MRI techniques for use in clinical practice and translational OA research studies. EVIDENCE LEVEL: 2 TECHNICAL EFFICACY: Stage 2.


Subject(s)
Cartilage, Articular , Musculoskeletal System , Osteoarthritis, Knee , Humans , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Magnetic Resonance Imaging/methods , Longitudinal Studies , Osteoarthritis, Knee/pathology
15.
Sci Rep ; 13(1): 6922, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117260

ABSTRACT

Current methods for assessing knee osteoarthritis (OA) do not provide comprehensive information to make robust and accurate outcome predictions. Deep learning (DL) risk assessment models were developed to predict the progression of knee OA to total knee replacement (TKR) over a 108-month follow-up period using baseline knee MRI. Participants of our retrospective study consisted of 353 case-control pairs of subjects from the Osteoarthritis Initiative with and without TKR over a 108-month follow-up period matched according to age, sex, ethnicity, and body mass index. A traditional risk assessment model was created to predict TKR using baseline clinical risk factors. DL models were created to predict TKR using baseline knee radiographs and MRI. All DL models had significantly higher (p < 0.001) AUCs than the traditional model. The MRI and radiograph ensemble model and MRI ensemble model (where TKR risk predicted by several contrast-specific DL models were averaged to get the ensemble TKR risk prediction) had the highest AUCs of 0.90 (80% sensitivity and 85% specificity) and 0.89 (79% sensitivity and 86% specificity), respectively, which were significantly higher (p < 0.05) than the AUCs of the radiograph and multiple MRI models (where the DL models were trained to predict TKR risk using single contrast or 2 contrasts together as input). DL models using baseline MRI had a higher diagnostic performance for predicting TKR than a traditional model using baseline clinical risk factors and a DL model using baseline knee radiographs.


Subject(s)
Arthroplasty, Replacement, Knee , Deep Learning , Osteoarthritis, Knee , Humans , Retrospective Studies , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/surgery , Magnetic Resonance Imaging/methods
16.
Osteoarthr Cartil Open ; 5(2): 100342, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36865988

ABSTRACT

Objective: Genicular artery embolization (GAE) is a novel, minimally invasive procedure for treatment of knee osteoarthritis (OA). This meta-analysis investigated the safety and effectiveness of this procedure. Design: Outcomes of this systematic review with meta-analysis were technical success, knee pain visual analog scale (VAS; 0-100 scale), WOMAC Total Score (0-100 scale), retreatment rate, and adverse events. Continuous outcomes were calculated as the weighted mean difference (WMD) versus baseline. Minimal clinically important difference (MCID) and substantial clinical benefit (SCB) rates were estimated in Monte Carlo simulations. Rates of total knee replacement and repeat GAE were calculated using life-table methods. Results: In 10 groups (9 studies; 270 patients; 339 knees), GAE technical success was 99.7%. Over 12 months, the WMD ranged from -34 to -39 at each follow-up for VAS score and -28 to -34 for WOMAC Total score (all p â€‹< â€‹0.001). At 12 months, 78% met the MCID for VAS score; 92% met the MCID for WOMAC Total score, and 78% met the SCB for WOMAC Total score. Higher baseline knee pain severity was associated with greater improvements in knee pain. Over 2 years, 5.2% of patients underwent total knee replacement and 8.3% received repeat GAE. Adverse events were minor, with transient skin discoloration as the most common (11.6%). Conclusions: Limited evidence suggests that GAE is a safe procedure that confers improvement in knee OA symptoms at established MCID thresholds. Patients with greater knee pain severity may be more responsive to GAE.

17.
Skeletal Radiol ; 52(11): 2211-2224, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36907953

ABSTRACT

Accurately detecting and characterizing articular cartilage defects is critical in assessing patients with osteoarthritis. While radiography is the first-line imaging modality, magnetic resonance imaging (MRI) is the most accurate for the noninvasive assessment of articular cartilage. Multiple semiquantitative grading systems for cartilage lesions in MRI were developed. The Outerbridge and modified Noyes grading systems are commonly used in clinical practice and for research. Other useful grading systems were developed for research, many of which are joint-specific. Both two-dimensional (2D) and three-dimensional (3D) pulse sequences are used to assess cartilage morphology and biochemical composition. MRI techniques for morphological assessment of articular cartilage can be categorized into 2D and 3D FSE/TSE spin-echo and gradient-recalled echo sequences. T2 mapping is most commonly used to qualitatively assess articular cartilage microstructural composition and integrity, extracellular matrix components, and water content. Quantitative techniques may be able to label articular cartilage alterations before morphological defects are visible. Accurate detection and characterization of shallow low-grade partial and small articular cartilage defects are the most challenging for any technique, but where high spatial resolution 3D MRI techniques perform best. This review article provides a practical overview of commonly used 2D and 3D MRI techniques for articular cartilage assessments in osteoarthritis.


Subject(s)
Cartilage, Articular , Osteoarthritis , Humans , Imaging, Three-Dimensional/methods , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/pathology , Osteoarthritis/diagnostic imaging , Osteoarthritis/pathology , Magnetic Resonance Imaging/methods , Water , Knee Joint/pathology
18.
Skeletal Radiol ; 52(11): 2225-2238, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36759367

ABSTRACT

Deep learning (DL) is one of the most exciting new areas in medical imaging. This article will provide a review of current applications of DL in osteoarthritis (OA) imaging, including methods used for cartilage lesion detection, OA diagnosis, cartilage segmentation, and OA risk assessment. DL techniques have been shown to have similar diagnostic performance as human readers for detecting and grading cartilage lesions within the knee on MRI. A variety of DL methods have been developed for detecting and grading the severity of knee OA and various features of knee OA on X-rays using standardized classification systems with diagnostic performance similar to human readers. Multiple DL approaches have been described for fully automated segmentation of cartilage and other knee tissues and have achieved higher segmentation accuracy than currently used methods with substantial reductions in segmentation times. Various DL models analyzing baseline X-rays and MRI have been developed for OA risk assessment. These models have shown high diagnostic performance for predicting a wide variety of OA outcomes, including the incidence and progression of radiographic knee OA, the presence and progression of knee pain, and future total knee replacement. The preliminary results of DL applications in OA imaging have been encouraging. However, many DL techniques require further technical refinement to maximize diagnostic performance. Furthermore, the generalizability of DL approaches needs to be further investigated in prospective studies using large image datasets acquired at different institutions with different imaging hardware before they can be implemented in clinical practice and research studies.


Subject(s)
Cartilage, Articular , Deep Learning , Osteoarthritis, Knee , Humans , Prospective Studies , Cartilage, Articular/pathology , Knee Joint/pathology , Osteoarthritis, Knee/diagnostic imaging , Osteoarthritis, Knee/pathology , Magnetic Resonance Imaging/methods
19.
Invest Radiol ; 58(1): 3-13, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36070548

ABSTRACT

ABSTRACT: Radiomics and machine learning-based methods offer exciting opportunities for improving diagnostic performance and efficiency in musculoskeletal radiology for various tasks, including acute injuries, chronic conditions, spinal abnormalities, and neoplasms. While early radiomics-based methods were often limited to a smaller number of higher-order image feature extractions, applying machine learning-based analytic models, multifactorial correlations, and classifiers now permits big data processing and testing thousands of features to identify relevant markers. A growing number of novel deep learning-based methods describe magnetic resonance imaging- and computed tomography-based algorithms for diagnosing anterior cruciate ligament tears, meniscus tears, articular cartilage defects, rotator cuff tears, fractures, metastatic skeletal disease, and soft tissue tumors. Initial radiomics and deep learning techniques have focused on binary detection tasks, such as determining the presence or absence of a single abnormality and differentiation of benign versus malignant. Newer-generation algorithms aim to include practically relevant multiclass characterization of detected abnormalities, such as typing and malignancy grading of neoplasms. So-called delta-radiomics assess tumor features before and after treatment, with temporal changes of radiomics features serving as surrogate markers for tumor responses to treatment. New approaches also predict treatment success rates, surgical resection completeness, and recurrence risk. Practice-relevant goals for the next generation of algorithms include diagnostic whole-organ and advanced classification capabilities. Important research objectives to fill current knowledge gaps include well-designed research studies to understand how diagnostic performances and suggested efficiency gains of isolated research settings translate into routine daily clinical practice. This article summarizes current radiomics- and machine learning-based magnetic resonance imaging and computed tomography approaches for musculoskeletal disease detection and offers a perspective on future goals and objectives.


Subject(s)
Deep Learning , Magnetic Resonance Imaging , Machine Learning , Radiography , Tomography, X-Ray Computed/methods , Retrospective Studies
20.
Radiology ; 306(1): 6-19, 2023 01.
Article in English | MEDLINE | ID: mdl-36413131

ABSTRACT

This article provides a focused overview of emerging technology in musculoskeletal MRI and CT. These technological advances have primarily focused on decreasing examination times, obtaining higher quality images, providing more convenient and economical imaging alternatives, and improving patient safety through lower radiation doses. New MRI acceleration methods using deep learning and novel reconstruction algorithms can reduce scanning times while maintaining high image quality. New synthetic techniques are now available that provide multiple tissue contrasts from a limited amount of MRI and CT data. Modern low-field-strength MRI scanners can provide a more convenient and economical imaging alternative in clinical practice, while clinical 7.0-T scanners have the potential to maximize image quality. Three-dimensional MRI curved planar reformation and cinematic rendering can provide improved methods for image representation. Photon-counting detector CT can provide lower radiation doses, higher spatial resolution, greater tissue contrast, and reduced noise in comparison with currently used energy-integrating detector CT scanners. Technological advances have also been made in challenging areas of musculoskeletal imaging, including MR neurography, imaging around metal, and dual-energy CT. While the preliminary results of these emerging technologies have been encouraging, whether they result in higher diagnostic performance requires further investigation.


Subject(s)
Magnetic Resonance Imaging , Tomography, X-Ray Computed , Humans , Magnetic Resonance Imaging/methods , Tomography, X-Ray Computed/methods , Tomography Scanners, X-Ray Computed , Technology , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...