Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
J Biomed Sci ; 29(1): 21, 2022 Mar 25.
Article in English | MEDLINE | ID: mdl-35337344

ABSTRACT

BACKGROUND: Sp1 is involved in the recurrence of glioblastoma (GBM) due to the acquirement of resistance to temozolomide (TMZ). Particularly, the role of Sp1 in metabolic reprogramming for drug resistance remains unknown. METHODS: RNA-Seq and mass spectrometry were used to analyze gene expression and metabolites amounts in paired GBM specimens (primary vs. recurrent) and in paired GBM cells (sensitive vs. resistant). ω-3/6 fatty acid and arachidonic acid (AA) metabolism in GBM patients were analyzed by targeted metabolome. Mitochondrial functions were determined by Seahorse XF Mito Stress Test, RNA-Seq, metabolome and substrate utilization for producing ATP. Therapeutic options targeting prostaglandin (PG) E2 in TMZ-resistant GBM were validated in vitro and in vivo. RESULTS: Among the metabolic pathways, Sp1 increased the prostaglandin-endoperoxide synthase 2 expression and PGE2 production in TMZ-resistant GBM. Mitochondrial genes and metabolites were obviously increased by PGE2, and these characteristics were required for developing resistance in GBM cells. For inducing TMZ resistance, PGE2 activated mitochondrial functions, including fatty acid ß-oxidation (FAO) and tricarboxylic acid (TCA) cycle progression, through PGE2 receptors, E-type prostanoid (EP)1 and EP3. Additionally, EP1 antagonist ONO-8713 inhibited the survival of TMZ-resistant GBM synergistically with TMZ. CONCLUSION: Sp1-regulated PGE2 production activates FAO and TCA cycle in mitochondria, through EP1 and EP3 receptors, resulting in TMZ resistance in GBM. These results will provide us a new strategy to attenuate drug resistance or to re-sensitize recurred GBM.


Subject(s)
Glioblastoma , Apoptosis/genetics , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Fatty Acids/therapeutic use , Glioblastoma/drug therapy , Glioblastoma/genetics , Glioblastoma/metabolism , Humans , Mitochondria , Temozolomide/pharmacology
2.
J Exp Clin Cancer Res ; 41(1): 47, 2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35109908

ABSTRACT

BACKGROUND: Glioblastoma (GBM) is the most aggressive and lethal brain tumor. Although the histone deacetylase (HDAC)/transcription factor axis promotes growth in GBM, whether HDACs including HDAC6 are involved in modulating long non-coding RNAs (lncRNAs) to affect GBM malignancy remains obscure. METHODS: Integrative analysis of microarray and RNA-seq was performed to identify lncRNAs governed by HDAC6. Half-life measurement and RNA-protein pull-down assay combined with isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis were conducted to identify RNA modulators. The effect of LINC00461 on GBM malignancy was evaluated using animal models and cell proliferation-related assays. Functional analysis of the LINC00461 downstream networks was performed comprehensively using ingenuity pathway analysis and public databases. RESULTS: We identified a lncRNA, LINC00461, which was substantially increased in stem-like/treatment-resistant GBM cells. LINC00461 was inversely correlated with the survival of mice-bearing GBM and it was stabilized by the interaction between HDAC6 and RNA-binding proteins (RBPs) such as carbon catabolite repression-negative on TATA-less (CCR4-NOT) core exoribonuclease subunit 6 and fused in sarcoma. Targeting LINC00461 using azaindolylsulfonamide, an HDAC6 inhibitor, decreased cell-division-related proteins via the lncRNA-microRNA (miRNA)-mRNA networks and caused cell-cycle arrest, thereby suppressing proliferation in parental and drug-resistant GBM cells and prolonging the survival of mice-bearing GBM. CONCLUSIONS: This study sheds light on the role of LINC00461 in GBM malignancy and provides a novel therapeutic strategy for targeting the HDAC6/RBP/LINC00461 axis and its downstream effectors in patients with GBM.


Subject(s)
Brain Neoplasms/genetics , Glioblastoma/genetics , Histone Deacetylase 6/genetics , MicroRNAs/genetics , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Female , Glioblastoma/pathology , Humans , Mice , Mice, Inbred NOD , Transfection
3.
Biomolecules ; 11(12)2021 12 02.
Article in English | MEDLINE | ID: mdl-34944458

ABSTRACT

Diacylglycerol kinase ß (DGKß) is an enzyme that converts diacylglycerol to phosphatidic acid and is mainly expressed in the cerebral cortex, hippocampus and striatum. We previously reported that DGKß induces neurite outgrowth and spinogenesis, contributing to higher brain functions, including emotion and memory. To elucidate the mechanisms involved in neuronal development by DGKß, we investigated the importance of DGKß activity in the induction of neurite outgrowth using human neuroblastoma SH-SY5Y cells. Interestingly, both wild-type DGKß and the kinase-negative (KN) mutant partially induced neurite outgrowth, and these functions shared a common pathway via the activation of mammalian target of rapamycin complex 1 (mTORC1). In addition, we found that DGKß interacted with the small GTPase RalA and that siRNA against RalA and phospholipase D (PLD) inhibitor treatments abolished DGKßKN-induced neurite outgrowth. These results indicate that binding of RalA and activation of PLD and mTORC1 are involved in DGKßKN-induced neurite outgrowth. Taken together with our previous reports, mTORC1 is a key molecule in both kinase-dependent and kinase-independent pathways of DGKß-mediated neurite outgrowth, which is important for higher brain functions.


Subject(s)
Neuronal Outgrowth , Phospholipase D , Corpus Striatum , Hippocampus
4.
Cell Death Dis ; 12(10): 884, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34584069

ABSTRACT

DNA repair promotes the progression and recurrence of glioblastoma (GBM). However, there remain no effective therapies for targeting the DNA damage response and repair (DDR) pathway in the clinical setting. Thus, we aimed to conduct a comprehensive analysis of DDR genes in GBM specimens to understand the molecular mechanisms underlying treatment resistance. Herein, transcriptomic analysis of 177 well-defined DDR genes was performed with normal and GBM specimens (n = 137) from The Cancer Genome Atlas and further integrated with the expression profiling of histone deacetylase 6 (HDAC6) inhibition in temozolomide (TMZ)-resistant GBM cells and patient-derived tumor cells. The effects of HDAC6 inhibition on DDR signaling were examined both in vitro and intracranial mouse models. We found that the expression of DDR genes, involved in repair pathways for DNA double-strand breaks, was upregulated in highly malignant primary and recurrent brain tumors, and their expression was related to abnormal clinical features. However, a potent HDAC6 inhibitor, MPT0B291, attenuated the expression of these genes, including RAD51 and CHEK1, and was more effective in blocking homologous recombination repair in GBM cells. Interestingly, it resulted in lower cytotoxicity in primary glial cells than other HDAC6 inhibitors. MPT0B291 reduced the growth of both TMZ-sensitive and TMZ-resistant tumor cells and prolonged survival in mouse models of GBM. We verified that HDAC6 regulated DDR genes by affecting Sp1 expression, which abolished MPT0B291-induced DNA damage. Our findings uncover a regulatory network among HDAC6, Sp1, and DDR genes for drug resistance and survival of GBM cells. Furthermore, MPT0B291 may serve as a potential lead compound for GBM therapy.


Subject(s)
DNA Damage , Glioblastoma/enzymology , Glioblastoma/pathology , Histone Deacetylase 6/metabolism , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival , DNA Damage/genetics , DNA Repair/drug effects , DNA Repair/genetics , Gene Expression Regulation, Neoplastic/drug effects , Glioblastoma/genetics , Histone Deacetylase 6/antagonists & inhibitors , Humans , Indoles , Male , Mice, Inbred NOD , Neoplasm Proteins/metabolism , Neuroglia/metabolism , Pyridines , Temozolomide/pharmacology
5.
Biomolecules ; 11(1)2021 01 12.
Article in English | MEDLINE | ID: mdl-33445784

ABSTRACT

Meiosis is a specialized cell division process that mediates genetic information transfer to the next generation. Meiotic chromosomal segregation occurs when DNA replication is completed during the pre-meiotic S phase. Here, we show that Schizosaccharomyces pombe Pef1, an orthologue of mammalian cyclin-dependent kinase 5 (CDK5), is required to promote pre-meiotic DNA replication. We examined the efficiency of meiotic initiation using pat1-114 mutants and found that, meiotic nuclear divisions did not occur in the pef1Δ pat1-114 strain. Deletion of pef1 also suppressed the expression of DNA replication factors and the phosphorylation of Cdc2 Tyr-15. The double deletion of clg1 and psl1 arrested meiotic initiation in pat1-114 mutant cells, similar to that of pef1-deficient cells. Meiotic progression was also slightly delayed in the pas1-deficient strain. Our results reveal that Pef1 regulates cyclin-coordinated meiotic progression.


Subject(s)
Cyclin-Dependent Kinase 5/chemistry , Cyclins/metabolism , DNA Replication , Meiosis , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Sequence Homology, Amino Acid , Chromosomes, Fungal/genetics , Cyclin-Dependent Kinase 5/metabolism , Gene Deletion , Models, Biological , Phosphorylation , Protein Binding
6.
J Biol Chem ; 296: 100049, 2021.
Article in English | MEDLINE | ID: mdl-33168631

ABSTRACT

Although senescent cells display various morphological changes including vacuole formation, it is still unclear how these processes are regulated. We have recently identified the gene, lymphocyte antigen 6 complex, locus D (LY6D), to be upregulated specifically in senescent cells. LY6D is a glycosylphosphatidylinositol-anchored cell-surface protein whose function remains unknown. Here, we analyzed the functional relationship between LY6D and the senescence processes. We found that overexpression of LY6D induced vacuole formation and knockdown of LY6D suppressed the senescence-associated vacuole formation. The LY6D-induced vacuoles were derived from macropinocytosis, a distinct form of endocytosis. Furthermore, Src family kinases and Ras were found to be recruited to membrane lipid rafts in an LY6D-dependent manner, and inhibition of their activity impaired the LY6D-induced macropinocytosis. Finally, reduction of senescent-cell survival induced by glutamine deprivation was recovered by albumin supplementation to the culture media in an LY6D-dependent manner. Because macropinocytosis acts as an amino acid supply route, these results suggest that LY6D-mediated macropinocytosis contributes to senescent-cell survival through the incorporation of extracellular nutrients.


Subject(s)
Cell Adhesion Molecules/metabolism , Cellular Senescence , Pinocytosis , Cell Adhesion Molecules/genetics , Cell Line, Tumor , Cell Survival , GPI-Linked Proteins/genetics , GPI-Linked Proteins/metabolism , Humans , ras Proteins/genetics , ras Proteins/metabolism , src-Family Kinases/genetics , src-Family Kinases/metabolism
7.
J Cell Sci ; 133(17)2020 09 09.
Article in English | MEDLINE | ID: mdl-32788233

ABSTRACT

In Schizosaccharomyces pombe, a general strategy for survival in response to environmental changes is sexual differentiation, which is triggered by TORC1 inactivation. However, mechanisms of TORC1 regulation in fission yeast remain poorly understood. In this study, we found that Pef1, which is an ortholog of mammalian CDK5, regulates the initiation of sexual differentiation through positive regulation of TORC1 activity. Conversely, deletion of pef1 leads to activation of autophagy and subsequent excessive TORC1 reactivation during the early phases of the nitrogen starvation response. This excessive TORC1 reactivation results in the silencing of the Ste11-Mei2 pathway and mating defects. Additionally, we found that pef1 genetically interacts with tsc1 and tsc2 for TORC1 regulation, and physically interacts with three cyclins, Clg1, Pas1 and Psl1. The double deletion of clg1 and pas1 promotes activation of autophagy and TORC1 during nitrogen starvation, similar to what is seen in pef1Δ cells. Overall, our work suggests that Pef1-Clg1 and Pef1-Pas1 complexes regulate initiation of sexual differentiation through control of the TSC-TORC1 pathway and autophagy.


Subject(s)
Schizosaccharomyces pombe Proteins , Schizosaccharomyces , Autophagy/genetics , Mechanistic Target of Rapamycin Complex 1/metabolism , Nitrogen/metabolism , RNA-Binding Proteins , Schizosaccharomyces/genetics , Schizosaccharomyces/metabolism , Schizosaccharomyces pombe Proteins/genetics , Schizosaccharomyces pombe Proteins/metabolism , Sex Differentiation
8.
Neurochem Int ; 134: 104645, 2020 03.
Article in English | MEDLINE | ID: mdl-31891737

ABSTRACT

Diacylglycerol kinase ß (DGKß) is an enzyme converting DG to phosphatidic acid (PA) and is specifically expressed in neurons, especially those in the cerebral cortex, hippocampus and striatum. We previously reported that DGKß induces neurite outgrowth and spinogenesis, contributing to higher brain function including emotion and memory, and plasma membrane localization of DGKß via the C1 domain and a cluster of basic amino acids at the C-terminus is necessary for its function. To clarify the mechanisms involved in neuronal development by DGKß, we investigated whether DGKß activity induces neurite outgrowth using human neuroblastoma SH-SY5Y cells. DGKß induced neurite outgrowth by activation of mammalian target of rapamycin complex 1 (mTORC1) through a kinase-dependent pathway. In addition, in primary cultured cortical and hippocampal neurons, inhibition of mTORC1 abolished DGKß induced-neurite outgrowth, branching and spinogenesis. These results indicated that DGKß induces neurite outgrowth and spinogenesis by activating mTORC1 in a kinase-dependent pathway.


Subject(s)
Diacylglycerol Kinase/pharmacology , Mechanistic Target of Rapamycin Complex 1/metabolism , Neuronal Outgrowth/physiology , Neurons/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Hippocampus/drug effects , Hippocampus/metabolism , Humans , Neurites/drug effects , Neurites/metabolism , Neuronal Outgrowth/drug effects
9.
Life Sci Alliance ; 2(1)2019 02.
Article in English | MEDLINE | ID: mdl-30659069

ABSTRACT

d-amino acid oxidase (DAO) is a flavin adenine dinucleotide (FAD)-dependent oxidase metabolizing neutral and polar d-amino acids. Unlike l-amino acids, the amounts of d-amino acids in mammalian tissues are extremely low, and therefore, little has been investigated regarding the physiological role of DAO. We have recently identified DAO to be up-regulated in cellular senescence, a permanent cell cycle arrest induced by various stresses, such as persistent DNA damage and oxidative stress. Because DAO produces reactive oxygen species (ROS) as byproducts of substrate oxidation and the accumulation of ROS mediates the senescence induction, we explored the relationship between DAO and senescence. We found that inhibition of DAO impaired senescence induced by DNA damage, and ectopic expression of wild-type DAO, but not enzymatically inactive mutant, enhanced it in an ROS-dependent manner. Furthermore, addition of d-amino acids and riboflavin, a metabolic precursor of FAD, to the medium potentiated the senescence-promoting effect of DAO. These results indicate that DAO promotes senescence through the enzymatic ROS generation, and its activity is regulated by the availability of its substrate and coenzyme.


Subject(s)
Cellular Senescence/physiology , D-Amino-Acid Oxidase/genetics , D-Amino-Acid Oxidase/metabolism , Reactive Oxygen Species/metabolism , Amino Acids/metabolism , Arginine/metabolism , Cellular Senescence/drug effects , Coenzymes/metabolism , D-Amino-Acid Oxidase/antagonists & inhibitors , DNA Damage/genetics , Flavin-Adenine Dinucleotide/metabolism , Gene Knockdown Techniques , Hep G2 Cells , Humans , Oxidation-Reduction , RNA Interference , Riboflavin/pharmacology , Serine/metabolism , Transfection
10.
IUBMB Life ; 71(6): 697-705, 2019 06.
Article in English | MEDLINE | ID: mdl-30393952

ABSTRACT

Protein kinase C (PKC) is activated by 1,2-diacylglycerol as a second messenger in the signaling mechanism coupled with the hydrolysis of membrane inositol phospholipids, although it was not found by screening for a 1,2-diacylglycerol-dependent enzyme. PKC is also a receptor for the tumor-promoting phorbol esters, but it was not identified by its property of binding phorbol esters, either. Instead, the discovery and characterization of PKC, now known to comprise a family with multiple isoforms, was through a circuitous voyage filled with unexpected twists and turns. This review summarizes the discovery and the initial experiments of PKC as a historical perspective of the enzyme family in the context of the progress in the studies on protein phosphorylation. © 2018 IUBMB Life, 71(6):697-705, 2019.


Subject(s)
Phosphatidylinositols/metabolism , Protein Kinase C/genetics , Proteins/chemistry , Diglycerides/chemistry , Diglycerides/metabolism , Humans , Hydrolysis , Phorbol Esters/metabolism , Phosphorylation/genetics , Protein Binding/genetics , Protein Kinase C/chemistry , Proteins/genetics
11.
Growth Horm IGF Res ; 42-43: 66-73, 2018.
Article in English | MEDLINE | ID: mdl-30273774

ABSTRACT

OBJECTIVE: Branched-chain amino acids (BCAAs) have been reported to inhibit several types of muscle atrophy via the activation of the mechanistic target of rapamycin complex 1 (mTORC1). However, we previously found that BCAA did not activate mTORC1 in growth hormone (GH)-deficient spontaneous dwarf rats (SDRs), and that GH restored the stimulatory effect of BCAAs toward the mTORC1. The objective of this study was to determine whether GH or Insulin-like growth factor-I (IGF-I) stimulated the expression of L-type amino acid transporters (LATs) that delivered BCAAs, and whether LATs were involved in the mTORC1 activation. DESIGN: After the continuous administration of GH, cross-sectional areas (CSAs) of muscle fibers and LAT mRNA levels in the skeletal muscles of SDRs were compared to those from the SDRs that received normal saline. The effect of GH and IGF-I on LAT mRNA levels were determined in L6 and C2C12 myocytes. The effects of 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid (BCH), a blocker for LATs, and LAT1 siRNA on mTORC1 activation and cell functions were examined in C2C12 cells. RESULTS: GH increased LAT1 and LAT4 mRNA levels in accordance with the increase in CSAs of muscle fibers in SDRs. IGF-I, and not GH, increased LAT1 mRNA levels in cultured L6 myocytes. IGF-I also increased LAT1 mRNA level in another myocyte line, C2C12. Furthermore, IGF-I reduced LAT3 and LAT4 mRNA levels in both cell lines. GH reduced LAT3 and LAT4 mRNA levels in L6 cells. BCH decreased basal C2C12 cell proliferation and reduced IGF-I-induced phosphorylation of 4E-BP1 and S6K, both of which are mTORC1 targets, but LAT1 siRNA did not affect the phosphorylation. This suggests that BCH may exert its effect via other pathway than LAT1. CONCLUSIONS: IGF-I increased LAT1 mRNA level in myocytes. However, the role of LAT1 in IGF-I-induced mTORC1 activation and cell functions remains unclear.


Subject(s)
Amino Acid Transport System L/metabolism , Gene Expression Regulation/drug effects , Growth Hormone/pharmacology , Insulin-Like Growth Factor I/pharmacology , Muscle Cells/metabolism , Muscle, Skeletal/metabolism , Animals , Cells, Cultured , Male , Mice , Muscle Cells/cytology , Muscle Cells/drug effects , Muscle, Skeletal/cytology , Muscle, Skeletal/drug effects , Rats , Rats, Sprague-Dawley
12.
J Cell Sci ; 130(8): 1413-1420, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28264926

ABSTRACT

Cellular senescence is a complex stress response characterized by permanent loss of proliferative capacity and is implicated in age-related disorders. Although the transcriptional activity of p53 (encoded by TP53) is known to be vital for senescence induction, the downstream effector genes critical for senescence remain unsolved. Recently, we have identified the proline dehydrogenase gene (PRODH) to be upregulated specifically in senescent cells in a p53-dependent manner, and the functional relevance of this to senescence is yet to be defined. Here, we conducted functional analyses to explore the relationship between PRODH and the senescence program. We found that genetic and pharmacological inhibition of PRODH suppressed senescent phenotypes induced by DNA damage. Furthermore, ectopic expression of wild-type PRODH, but not enzymatically inactive forms, induced senescence associated with the increase in reactive oxygen species (ROS) and the accumulation of DNA damage. Treatment with N-acetyl-L-cysteine, a ROS scavenger, prevented senescence induced by PRODH overexpression. These results indicate that PRODH plays a causative role in DNA damage-induced senescence through the enzymatic generation of ROS.


Subject(s)
Cellular Senescence , Fibroblasts/physiology , Proline Oxidase/metabolism , Reactive Oxygen Species/metabolism , Acetylcysteine/pharmacology , Cell Line , Cellular Senescence/drug effects , Cellular Senescence/genetics , DNA Damage/drug effects , DNA Damage/genetics , Fibroblasts/drug effects , Furans/pharmacology , Humans , Proline Oxidase/genetics , RNA, Small Interfering/genetics , Transgenes/genetics , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
13.
Sci Rep ; 6: 31758, 2016 08 22.
Article in English | MEDLINE | ID: mdl-27545311

ABSTRACT

Cellular senescence is defined as permanent cell cycle arrest induced by various stresses. Although the p53 transcriptional activity is essential for senescence induction, the downstream genes that are crucial for senescence remain unsolved. Here, by using a developed experimental system in which cellular senescence or apoptosis is induced preferentially by altering concentration of etoposide, a DNA-damaging drug, we compared gene expression profiles of senescent and apoptotic cells by microarray analysis. Subtraction of the expression profile of apoptotic cells identified 20 genes upregulated specifically in senescent cells. Furthermore, 6 out of 20 genes showed p53-dependent upregulation by comparing gene expression between p53-proficient and -deficient cells. These 6 genes were also upregulated during replicative senescence of normal human diploid fibroblasts, suggesting that upregulation of these genes is a general phenomenon in senescence. Among these genes, 2 genes (PRODH and DAO) were found to be directly regulated by p53, and ectopic expression of 4 genes (PRODH, DAO, EPN3, and GPR172B) affected senescence phenotypes induced by etoposide treatment. Collectively, our results identified several proteins as novel downstream effectors of p53-mediated senescence and provided new clues for further research on the complex signalling networks underlying the induction and maintenance of senescence.


Subject(s)
Cellular Senescence/drug effects , Etoposide/pharmacology , Gene Expression Profiling/methods , Transcriptome/drug effects , Antineoplastic Agents, Phytogenic/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Line , Cell Line, Tumor , Cellular Senescence/genetics , Hep G2 Cells , Humans , Immunoblotting , RNA Interference , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
14.
Nucleic Acids Res ; 44(18): 8704-8713, 2016 Oct 14.
Article in English | MEDLINE | ID: mdl-27325740

ABSTRACT

ATF4 is a pro-oncogenic transcription factor whose translation is activated by eIF2 phosphorylation through delayed re-initiation involving two uORFs in the mRNA leader. However, in yeast, the effect of eIF2 phosphorylation can be mimicked by eIF5 overexpression, which turns eIF5 into translational inhibitor, thereby promoting translation of GCN4, the yeast ATF4 equivalent. Furthermore, regulatory protein termed eIF5-mimic protein (5MP) can bind eIF2 and inhibit general translation. Here, we show that 5MP1 overexpression in human cells leads to strong formation of 5MP1:eIF2 complex, nearly comparable to that of eIF5:eIF2 complex produced by eIF5 overexpression. Overexpression of eIF5, 5MP1 and 5MP2, the second human paralog, promotes ATF4 expression in certain types of human cells including fibrosarcoma. 5MP overexpression also induces ATF4 expression in Drosophila The knockdown of 5MP1 in fibrosarcoma attenuates ATF4 expression and its tumor formation on nude mice. Since 5MP2 is overproduced in salivary mucoepidermoid carcinoma, we propose that overexpression of eIF5 and 5MP induces translation of ATF4 and potentially other genes with uORFs in their mRNA leaders through delayed re-initiation, thereby enhancing the survival of normal and cancer cells under stress conditions.


Subject(s)
Activating Transcription Factor 4/metabolism , DNA-Binding Proteins/metabolism , Eukaryotic Initiation Factor-2/metabolism , Eukaryotic Initiation Factor-5/metabolism , Peptide Chain Initiation, Translational , Animals , Carcinogenesis/pathology , Cell Line, Tumor , Drosophila melanogaster/metabolism , Eukaryotic Initiation Factor-3 , Fibrosarcoma/pathology , Gene Knockdown Techniques , HEK293 Cells , HeLa Cells , Humans , Male , Mass Spectrometry , Mice, Nude
15.
PLoS One ; 11(5): e0156239, 2016.
Article in English | MEDLINE | ID: mdl-27227887

ABSTRACT

In mammalian cells, mTORC1 activity is regulated by Rag GTPases. It is thought that the Ragulator complex and the GATOR (GAP activity towards Rags) complex regulate RagA/B as its GDP/GTP exchange factor (GEF) and GTPase-activating protein (GAP), respectively. However, the functions of components in these complexes remain elusive. Using fission yeast as a model organism, here we found that the loss of Lam2 (SPBC1778.05c), a homolog of a Ragulator component LAMTOR2, as well as the loss of Gtr1 or Gtr2 phenocopies the loss of Npr2 or Npr3, homologs of GATOR components Nprl2 or Nprl3, respectively. These phenotypes were rescued by TORC1 inhibition using pharmacological or genetic means, and the loss of Lam2, Gtr1, Gtr2, Npr2 or Npr3 disinhibited TORC1 activity under nitrogen depletion, as measured by Rps6 phosphorylation. Consistently, overexpression of GDP-locked Gtr1S20L or GTP-locked Gtr2Q60L, which suppress TORC1 activity in budding yeast, rescued the growth defect of Δgtr1 cells or Δgtr2 cells, respectively, and the loss of Lam2, Npr2 or Npr3 similarly diminished the vacuolar localization and the protein levels of Gtr1 and Gtr2. Furthermore, Lam2 physically interacted with Npr2 and Gtr1. These findings suggest that Lam2 and Npr2-Npr3 function together as a tether for GDP-bound Gtr1 to the vacuolar membrane, thereby suppressing TORC1 activity for multiple cellular functions.


Subject(s)
Endosomes/metabolism , Gene Expression Regulation, Fungal , Intracellular Membranes/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/metabolism , Vacuoles/metabolism , Protein Binding , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development , Schizosaccharomyces pombe Proteins/antagonists & inhibitors , Schizosaccharomyces pombe Proteins/genetics , Signal Transduction
16.
Biochem Biophys Res Commun ; 469(3): 377-83, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26657846

ABSTRACT

The CLOCK-interacting protein, Circadian (CIPC), has been identified as an additional negative-feedback regulator of the circadian clock. However, recent study on CIPC knockout mice has shown that CIPC is not critically required for basic circadian clock function, suggesting other unknown biological roles for CIPC. In this study, we focused on the cell cycle dependent nuclear-cytoplasmic shuttling function of CIPC and on identifying its binding proteins. Lys186 and 187 were identified as the essential amino acid residues within the nuclear localization signal (NLS) of CIPC. We identified CIPC-binding proteins such as the multifunctional enzyme CAD protein (carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase), which is a key enzyme for de novo pyrimidine synthesis. Compared to control cells, HEK293 cells overexpressing wild-type CIPC showed suppressed cell proliferation and retardation of cell cycle. We also found that PMA-induced Erk activation was inhibited with expression of wild-type CIPC. In contrast, the NLS mutant of CIPC, which reduced the ability of CIPC to translocate into the nucleus, did not exhibit these biological effects. Since CAD and Erk have significant roles in cell proliferation and cell cycle, CIPC may work as a cell cycle regulator by interacting with these binding proteins.


Subject(s)
Aspartate Carbamoyltransferase/metabolism , Carbamoyl-Phosphate Synthase (Glutamine-Hydrolyzing)/metabolism , Carrier Proteins/metabolism , Circadian Rhythm/physiology , Dihydroorotase/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Gene Expression Regulation/physiology , Animals , COS Cells , Chlorocebus aethiops , Enzyme Activation , Feedback, Physiological/physiology , HEK293 Cells , HeLa Cells , Humans
17.
J Biomed Sci ; 22: 48, 2015 Jul 04.
Article in English | MEDLINE | ID: mdl-26141684

ABSTRACT

BACKGROUND: Breast cancer is classified into three subtypes by the expression of biomarker receptors such as hormone receptors and human epidermal growth factor receptor 2. Triple-negative breast cancer (TNBC) expresses none of these receptors and has an aggressive phenotype with a poor prognosis, which is insensitive to the drugs that target the hormone receptors and human epidermal growth factor receptor 2. It is, thus, required to develop an effective therapeutic reagent to treat TNBC. RESULTS: The study using a panel of 19 breast cancer cell lines revealed that midostaurin, a multi-target protein kinase inhibitor, suppresses preferentially the growth of TNBC cells comparing with non-TNBC cells. Clustering analysis of the drug activity data for the panel of cancer cell lines predicted that midostaurin shares the target with Aurora kinase inhibitors. Following studies indicated that midostaurin attenuates the phosphorylation reaction mediated by Aurora kinase in the cells and directly inhibits this protein kinase in vitro, and that this reagent induces apoptosis accompanying accumulation of 4N and 8N DNA cells in TNBC cells. CONCLUSION: Midostaurin suppresses the proliferation of TNBC cells among the breast cancer cell lines presumably through the inhibition of the Aurora kinase family. The precise study of midostaurin on cell growth will contribute to the development of the drug for the treatment of TNBC.


Subject(s)
Aurora Kinase A/biosynthesis , Aurora Kinase B/biosynthesis , Staurosporine/analogs & derivatives , Triple Negative Breast Neoplasms/drug therapy , Animals , Apoptosis/drug effects , Aurora Kinase A/genetics , Aurora Kinase B/genetics , Cell Proliferation/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , Humans , MCF-7 Cells , Mice , Protein Kinase Inhibitors/administration & dosage , Staurosporine/administration & dosage , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays
18.
Biol Open ; 3(6): 542-52, 2014 May 29.
Article in English | MEDLINE | ID: mdl-24876389

ABSTRACT

The Tsc1-Tsc2 complex homologous to human tuberous sclerosis complex proteins governs amino acid uptake by regulating the expression and intracellular distribution of amino acid transporters in Schizosaccharomyces pombe. Here, we performed a genetic screening for molecules that are involved in amino acid uptake and found Arn1 (also known as Any1). Arn1 is homologous to ART1, an arrestin-related trafficking adaptor (ART) in Saccharomyces cerevisiae, and contains a conserved arrestin motif, a ubiquitination site, and two PY motifs. Overexpression of arn1(+) confers canavanine resistance on cells, whereas its disruption causes hypersensitivity to canavanine. We also show that Arn1 regulates endocytosis of the Cat1 amino acid transporter. Furthermore, deletion of arn1(+) suppresses a defect of amino acid uptake and the aberrant Cat1 localization in tsc2Δ. Arn1 interacts with and is ubiquitinated by the Pub1 ubiquitin ligase, which is necessary to regulate Cat1 endocytosis. Cat1 undergoes ubiquitinations on lysine residues within the N-terminus, which are mediated, in part, by Arn1 to determine Cat1 localization. Correctively, Arn1 is an ART in S. pombe and contributes to amino acid uptake through regulating Cat1 endocytosis in which Tsc2 is involved.

19.
PLoS One ; 9(4): e93940, 2014.
Article in English | MEDLINE | ID: mdl-24714658

ABSTRACT

The TSC1-TSC2-TBC1D7 complex is an important negative regulator of the mechanistic target of rapamycin complex 1 that controls cell growth in response to environmental cues. Inactivating TSC1 and TSC2 mutations cause tuberous sclerosis complex (TSC), an autosomal dominant disorder characterised by the occurrence of benign tumours in various organs and tissues, notably the brain, skin and kidneys. TBC1D7 mutations have not been reported in TSC patients but homozygous inactivation of TBC1D7 causes megaencephaly and intellectual disability. Here, using an exon-specific deletion strategy, we demonstrate that some regions of TSC1 are not necessary for the core function of the TSC1-TSC2 complex. Furthermore, we show that the TBC1D7 binding site is encoded by TSC1 exon 22 and identify amino acid residues involved in the TSC1-TBC1D7 interaction.


Subject(s)
Carrier Proteins/genetics , Tuberous Sclerosis/genetics , Tumor Suppressor Proteins/genetics , Carrier Proteins/metabolism , Exons , Humans , Intracellular Signaling Peptides and Proteins , Mutation , Tuberous Sclerosis/metabolism , Tuberous Sclerosis Complex 1 Protein , Tuberous Sclerosis Complex 2 Protein , Tumor Suppressor Proteins/metabolism
20.
Proc Natl Acad Sci U S A ; 111(5): 1909-14, 2014 Feb 04.
Article in English | MEDLINE | ID: mdl-24449862

ABSTRACT

In response to viral infection, the host induces over 300 IFN-stimulated genes (ISGs), which are the central component of intracellular antiviral innate immunity. Inefficient induction of ISGs contributes to poor control and persistence of hepatitis C virus infection. Therefore, further understanding of the hepatocytic ISG regulation machinery will guide us to an improved management strategy against hepatitis C virus infection. In this study, comprehensive genome-wide, high-throughput cDNA screening for genes regulating ISG expression identified a tyrosine kinase nonreceptor 1 (TNK1) as a unique player in the ISG induction pathway. The immune-modulatory function of TNK1 has never been studied, and this study characterizes its significance in antiviral innate immunity. TNK1 is abundantly expressed in hepatocytes and maintains basal ISG expression. More importantly, TNK1 plays a critical role in type I IFN-mediated ISG induction. We discovered that the activated IFN receptor complex recruits TNK1 from the cytoplasm. TNK1 is then phosphorylated to enhance its kinase activity. The activated TNK1 potentiates JAK-STAT signaling through dual phosphorylation of STAT1 at tyrosine 701 and serine 727 amino acid positions. Our loss-of-function approach demonstrated that TNK1 governs a cluster of ISG expression that defines the TNK1 pathway effector genes. More importantly, TNK1 abundance is inversely correlated to viral replication efficiency and is also a determinant factor for the hepatocytic response to antiviral treatment. Taken together, our studies found a critical but unidentified integrated component of the IFN-JAK-STAT signaling cascade.


Subject(s)
Antiviral Agents/metabolism , Fetal Proteins/metabolism , Interferons/metabolism , Phosphoserine/metabolism , Protein-Tyrosine Kinases/metabolism , STAT1 Transcription Factor/metabolism , Signal Transduction , Animals , Cell Line, Tumor , DNA, Complementary/genetics , Disease Susceptibility , Gene Deletion , Gene Expression Regulation , Genetic Testing , Genome, Human/genetics , Hepacivirus/physiology , Hepatitis C/enzymology , Hepatitis C/genetics , Hepatitis C/pathology , Hepatitis C/virology , Hepatocytes/enzymology , Hepatocytes/pathology , Hepatocytes/virology , Humans , Immunity, Innate/genetics , Janus Kinase 1/metabolism , Liver/metabolism , Mice , Mice, Inbred C57BL , Phosphorylation
SELECTION OF CITATIONS
SEARCH DETAIL
...