Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 10(1): 10562, 2020 06 29.
Article in English | MEDLINE | ID: mdl-32601308

ABSTRACT

Levels of iron and iron-related proteins including ferritin are higher in the lung tissue and lavage fluid of individuals with chronic obstructive pulmonary disease (COPD), when compared to healthy controls. Whether more iron in the extracellular milieu of the lung associates with distinct clinical phenotypes of COPD, including increased exacerbation susceptibility, is unknown. We measured iron and ferritin levels in the bronchoalveolar lavage fluid (BALF) of participants enrolled in the SubPopulations and InteRmediate Outcome Measures In COPD (SPIROMICS) bronchoscopy sub-study (n = 195). BALF Iron parameters were compared to systemic markers of iron availability and tested for association with FEV1 % predicted and exacerbation frequency. Exacerbations were modelled using a zero-inflated negative binomial model using age, sex, smoking, and FEV1 % predicted as clinical covariates. BALF iron and ferritin were higher in participants with COPD and in smokers without COPD when compared to non-smoker control participants but did not correlate with systemic iron markers. BALF ferritin and iron were elevated in participants who had COPD exacerbations, with a 2-fold increase in BALF ferritin and iron conveying a 24% and 2-fold increase in exacerbation risk, respectively. Similar associations were not observed with plasma ferritin. Increased airway iron levels may be representative of a distinct pathobiological phenomenon that results in more frequent COPD exacerbation events, contributing to disease progression in these individuals.


Subject(s)
Iron-Binding Proteins/metabolism , Iron/metabolism , Pulmonary Disease, Chronic Obstructive/physiopathology , Adult , Aged , Aged, 80 and over , Biomarkers/blood , Bronchoalveolar Lavage Fluid/chemistry , Disease Progression , Female , Ferritins/metabolism , Forced Expiratory Volume , Humans , Iron/physiology , Iron-Binding Proteins/physiology , Lung/metabolism , Male , Middle Aged , Pulmonary Disease, Chronic Obstructive/metabolism , Respiratory Function Tests , Risk Factors , Severity of Illness Index
4.
Autophagy ; 14(2): 221-232, 2018.
Article in English | MEDLINE | ID: mdl-29130366

ABSTRACT

Persistent inflammation within the respiratory tract underlies the pathogenesis of numerous chronic pulmonary diseases including chronic obstructive pulmonary disease, asthma and pulmonary fibrosis. Chronic inflammation in the lung may arise from a combination of genetic susceptibility and environmental influences, including exposure to microbes, particles from the atmosphere, irritants, pollutants, allergens, and toxic molecules. To this end, an immediate, strong, and highly regulated inflammatory defense mechanism is needed for the successful maintenance of homeostasis within the respiratory system. Macroautophagy/autophagy plays an essential role in the inflammatory response of the lung to infection and stress. At baseline, autophagy may be critical for inhibiting spontaneous pulmonary inflammation and fundamental for the response of pulmonary leukocytes to infection; however, when not regulated, persistent or inefficient autophagy may be detrimental to lung epithelial cells, promoting lung injury. This perspective will discuss the role of autophagy in driving and regulating inflammatory responses of the lung in chronic lung diseases with a focus on potential avenues for therapeutic targeting. Abbreviations AR allergic rhinitis AM alveolar macrophage ATG autophagy-related CF cystic fibrosis CFTR cystic fibrosis transmembrane conductance regulator COPD chronic obstructive pulmonary disease CS cigarette smoke CSE cigarette smoke extract DC dendritic cell IH intermittent hypoxia IPF idiopathic pulmonary fibrosis ILD interstitial lung disease MAP1LC3B microtubule associated protein 1 light chain 3 beta MTB Mycobacterium tuberculosis MTOR mechanistic target of rapamycin kinase NET neutrophil extracellular traps OSA obstructive sleep apnea PAH pulmonary arterial hypertension PH pulmonary hypertension ROS reactive oxygen species TGFB1 transforming growth factor beta 1 TNF tumor necrosis factor.


Subject(s)
Autophagy/immunology , Inflammation/immunology , Lung Diseases/immunology , Animals , Autophagy/genetics , Chronic Disease , Genetic Predisposition to Disease , Homeostasis/immunology , Humans , Inflammation/genetics , Lung Diseases/genetics , Mice , Signal Transduction/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...