Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
2.
J Clin Oncol ; 42(13): 1542-1552, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38335473

ABSTRACT

PURPOSE: Histone 3 (H3) K27M-mutant diffuse midline glioma (DMG) has a dismal prognosis with no established effective therapy beyond radiation. This integrated analysis evaluated single-agent ONC201 (dordaviprone), a first-in-class imipridone, in recurrent H3 K27M-mutant DMG. METHODS: Fifty patients (pediatric, n = 4; adult, n = 46) with recurrent H3 K27M-mutant DMG who received oral ONC201 monotherapy in four clinical trials or one expanded access protocol were included. Eligible patients had measurable disease by Response Assessment in Neuro-Oncology (RANO) high-grade glioma (HGG) criteria and performance score (PS) ≥60 and were ≥90 days from radiation; pontine and spinal tumors were ineligible. The primary end point was overall response rate (ORR) by RANO-HGG criteria. Secondary end points included duration of response (DOR), time to response (TTR), corticosteroid response, PS response, and ORR by RANO low-grade glioma (LGG) criteria. Radiographic end points were assessed by dual-reader, blinded independent central review. RESULTS: The ORR (RANO-HGG) was 20.0% (95% CI, 10.0 to 33.7). The median TTR was 8.3 months (range, 1.9-15.9); the median DOR was 11.2 months (95% CI, 3.8 to not reached). The ORR by combined RANO-HGG/LGG criteria was 30.0% (95% CI, 17.9 to 44.6). A ≥50% corticosteroid dose reduction occurred in 7 of 15 evaluable patients (46.7% [95% CI, 21.3 to 73.4]); PS improvement occurred in 6 of 34 evaluable patients (20.6% [95% CI, 8.7 to 37.9]). Grade 3 treatment-related treatment-emergent adverse events (TR-TEAEs) occurred in 20.0% of patients; the most common was fatigue (n = 5; 10%); no grade 4 TR-TEAEs, deaths, or discontinuations occurred. CONCLUSION: ONC201 monotherapy was well tolerated and exhibited durable and clinically meaningful efficacy in recurrent H3 K27M-mutant DMG.


Subject(s)
Brain Neoplasms , Glioma , Histones , Mutation , Humans , Adult , Female , Male , Adolescent , Middle Aged , Young Adult , Glioma/genetics , Glioma/drug therapy , Glioma/pathology , Brain Neoplasms/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Child , Histones/genetics , Aged , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/drug therapy , Child, Preschool , Pyrimidines/therapeutic use , Pyrimidines/adverse effects , Pyridones/therapeutic use
3.
BMC Cancer ; 24(1): 147, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38291372

ABSTRACT

BACKGROUND: Pediatric low-grade glioma (pLGG) is essentially a single pathway disease, with most tumors driven by genomic alterations affecting the mitogen-activated protein kinase/ERK (MAPK) pathway, predominantly KIAA1549::BRAF fusions and BRAF V600E mutations. This makes pLGG an ideal candidate for MAPK pathway-targeted treatments. The type I BRAF inhibitor, dabrafenib, in combination with the MEK inhibitor, trametinib, has been approved by the United States Food and Drug Administration for the systemic treatment of BRAF V600E-mutated pLGG. However, this combination is not approved for the treatment of patients with tumors harboring BRAF fusions as type I RAF inhibitors are ineffective in this setting and may paradoxically enhance tumor growth. The type II RAF inhibitor, tovorafenib (formerly DAY101, TAK-580, MLN2480), has shown promising activity and good tolerability in patients with BRAF-altered pLGG in the phase 2 FIREFLY-1 study, with an objective response rate (ORR) per Response Assessment in Neuro-Oncology high-grade glioma (RANO-HGG) criteria of 67%. Tumor response was independent of histologic subtype, BRAF alteration type (fusion vs. mutation), number of prior lines of therapy, and prior MAPK-pathway inhibitor use. METHODS: LOGGIC/FIREFLY-2 is a two-arm, randomized, open-label, multicenter, global, phase 3 trial to evaluate the efficacy, safety, and tolerability of tovorafenib monotherapy vs. current standard of care (SoC) chemotherapy in patients < 25 years of age with pLGG harboring an activating RAF alteration who require first-line systemic therapy. Patients are randomized 1:1 to either tovorafenib, administered once weekly at 420 mg/m2 (not to exceed 600 mg), or investigator's choice of prespecified SoC chemotherapy regimens. The primary objective is to compare ORR between the two treatment arms, as assessed by independent review per RANO-LGG criteria. Secondary objectives include comparisons of progression-free survival, duration of response, safety, neurologic function, and clinical benefit rate. DISCUSSION: The promising tovorafenib activity data, CNS-penetration properties, strong scientific rationale combined with the manageable tolerability and safety profile seen in patients with pLGG led to the SIOPe-BTG-LGG working group to nominate tovorafenib for comparison with SoC chemotherapy in this first-line phase 3 trial. The efficacy, safety, and functional response data generated from the trial may define a new SoC treatment for newly diagnosed pLGG. TRIAL REGISTRATION: ClinicalTrials.gov: NCT05566795. Registered on October 4, 2022.


Subject(s)
Fireflies , Glioma , Animals , Child , Humans , Young Adult , Fireflies/metabolism , Proto-Oncogene Proteins B-raf , Glioma/drug therapy , Glioma/genetics , Glioma/metabolism , Treatment Outcome , Mutation , Mitogen-Activated Protein Kinases , Oximes , Pyridones , Pyrimidinones/therapeutic use , Antineoplastic Combined Chemotherapy Protocols/therapeutic use
4.
Nat Med ; 30(1): 207-217, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37978284

ABSTRACT

BRAF genomic alterations are the most common oncogenic drivers in pediatric low-grade glioma (pLGG). Arm 1 (n = 77) of the ongoing phase 2 FIREFLY-1 (PNOC026) trial investigated the efficacy of the oral, selective, central nervous system-penetrant, type II RAF inhibitor tovorafenib (420 mg m-2 once weekly; 600 mg maximum) in patients with BRAF-altered, relapsed/refractory pLGG. Arm 2 (n = 60) is an extension cohort, which provided treatment access for patients with RAF-altered pLGG after arm 1 closure. Based on independent review, according to Response Assessment in Neuro-Oncology High-Grade Glioma (RANO-HGG) criteria, the overall response rate (ORR) of 67% met the arm 1 prespecified primary endpoint; median duration of response (DOR) was 16.6 months; and median time to response (TTR) was 3.0 months (secondary endpoints). Other select arm 1 secondary endpoints included ORR, DOR and TTR as assessed by Response Assessment in Pediatric Neuro-Oncology Low-Grade Glioma (RAPNO) criteria and safety (assessed in all treated patients and the primary endpoint for arm 2, n = 137). The ORR according to RAPNO criteria (including minor responses) was 51%; median DOR was 13.8 months; and median TTR was 5.3 months. The most common treatment-related adverse events (TRAEs) were hair color changes (76%), elevated creatine phosphokinase (56%) and anemia (49%). Grade ≥3 TRAEs occurred in 42% of patients. Nine (7%) patients had TRAEs leading to discontinuation of tovorafenib. These data indicate that tovorafenib could be an effective therapy for BRAF-altered, relapsed/refractory pLGG. ClinicalTrials.gov registration: NCT04775485 .


Subject(s)
Fireflies , Glioma , Humans , Child , Animals , Proto-Oncogene Proteins B-raf/genetics , Glioma/drug therapy , Glioma/genetics
6.
Neuro Oncol ; 24(4): 655-664, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34347089

ABSTRACT

BACKGROUND: A phase I/II trial of vorinostat (suberoylanilide hydroxamic acid), an oral histone deacetylase inhibitor, was conducted in children with newly diagnosed diffuse intrinsic pontine glioma (DIPG) through the Children's Oncology Group (COG) to: 1) determine the recommended phase II dose (RP2D) of vorinostat given concurrently with radiation therapy; 2) document the toxicities of continuing vorinostat as maintenance therapy after radiation; and 3) to determine the efficacy of this regimen by comparing the risk of progression or death with a historical model from past COG trials. METHODS: Vorinostat was given once daily, Monday through Friday, during radiation therapy (54 Gy in 30 fractions), and then continued at 230 mg/m2 daily for a maximum of twelve 28-day cycles. RESULTS: Twelve patients enrolled in the phase I study; the RP2D of vorinostat given concurrently with radiation was 230 mg/m2/day, Monday through Friday weekly. The six patients enrolled at the RP2D and an additional 64 patients enrolled in the phase II study contributed to the efficacy assessment. Although vorinostat was well-tolerated, did not interrupt radiation therapy, and was permanently discontinued in only 8.6% of patients due to toxicities, risk for EFS-event was not significantly reduced compared with the target risk derived from historical COG data (P = 0.32; 1-sided). The 1-year EFS was 5.85% (95% CI 1.89-13.1%) and 1-year OS was 39.2% (27.8-50.5%). CONCLUSIONS: Vorinostat given concurrently with radiation followed by vorinostat monotherapy was well tolerated in children with newly diagnosed DIPG but failed to improve outcome.


Subject(s)
Astrocytoma , Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Astrocytoma/drug therapy , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/radiotherapy , Child , Diffuse Intrinsic Pontine Glioma/therapy , Histone Deacetylase Inhibitors/therapeutic use , Humans , Hydroxamic Acids/therapeutic use , Vorinostat
7.
Clin Cancer Res ; 27(22): 6197-6208, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34433654

ABSTRACT

PURPOSE: Selective RAF-targeted therapy is effective in some patients with BRAFV600E-mutated glioma, though emergent and adaptive resistance occurs through ill-defined mechanisms. EXPERIMENTAL DESIGN: Paired pre-/post- RAF inhibitor (RAFi)-treated glioma samples (N = 15) were obtained and queried for treatment-emergent genomic alterations using DNA and RNA sequencing (RNA-seq). Functional validation of putative resistance mechanisms was performed using established and patient-derived BRAFV600E-mutant glioma cell lines. RESULTS: Analysis of 15 tissue sample pairs identified 13 alterations conferring putative resistance were identified among nine paired samples (including mutations involving ERRFI1, BAP1, ANKHD1, and MAP2K1). We performed functional validation of mechanisms of resistance, including loss of NF1, PTEN, or CBL, in BRAFV600E-mutant glioma lines, and demonstrate they are capable of conferring resistance in vitro. Knockdown of CBL resulted in increased EGFR expression and phosphorylation, a possible mechanism for maintaining ERK signaling within the cell. Combination therapy with a MEKi or EGFR inhibitor was able to overcome resistance to BRAFi, in NF1 knockdown and CBL knockdown, respectively. Restoration of wild-type PTEN in B76 cells (PTEN-/-) restored sensitivity to BRAFi. We identified and validated CRAF upregulation as a mechanism of resistance in one resistant sample. RNA-seq analysis identified two emergent expression patterns in resistant samples, consistent with expression patterns of known glioma subtypes. CONCLUSIONS: Resistance mechanisms to BRAFi in glioma are varied and may predict effective precision combinations of targeted therapy, highlighting the importance of a personalized approach.


Subject(s)
Glioma , Proto-Oncogene Proteins B-raf , Glioma/drug therapy , Glioma/genetics , Humans , Mutation , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins B-raf/metabolism , RNA-Binding Proteins , Signal Transduction , Tumor Suppressor Proteins , Ubiquitin Thiolesterase
8.
Neuro Oncol ; 23(10): 1777-1788, 2021 10 01.
Article in English | MEDLINE | ID: mdl-33631016

ABSTRACT

BACKGROUND: Pediatric low-grade gliomas (pLGGs) are the most common childhood brain tumor. Progression-free survival (PFS) is much lower than overall survival, emphasizing the need for alternative treatments. Sporadic (without neurofibromatosis type 1) optic pathway and hypothalamic gliomas (OPHGs) are often multiply recurrent and cause significant visual deficits. Recently, there has been a prioritization of functional outcomes. METHODS: We present results from children with recurrent/progressive OPHGs treated on a PBTC (Pediatric Brain Tumor Consortium) phase II trial evaluating efficacy of selumetinib (AZD6244, ARRY-142886) a MEK-1/2 inhibitor. Stratum 4 of PBTC-029 included patients with sporadic recurrent/progressive OPHGs treated with selumetinib at the recommended phase II dose (25mg/m2/dose BID) for a maximum of 26 courses. RESULTS: Twenty-five eligible and evaluable patients were enrolled with a median of 4 (1-11) previous therapies. Six of 25 (24%) had partial response, 14/25 (56%) had stable disease, and 5 (20%) had progressive disease while on treatment. The median treatment courses were 26 (2-26); 14/25 patients completed all 26 courses. Two-year PFS was 78 ± 8.5%. Nineteen of 25 patients were evaluable for visual acuity which improved in 4/19 patients (21%), was stable in 13/19 (68%), and worsened in 2/19 (11%). Five of 19 patients (26%) had improved visual fields and 14/19 (74%) were stable. The most common toxicities were grade 1/2 CPK elevation, anemia, diarrhea, headache, nausea/emesis, fatigue, AST and ALT increase, hypoalbuminemia, and rash. CONCLUSIONS: Selumetinib was tolerable and led to responses and prolonged disease stability in children with recurrent/progressive OPHGs based upon radiographic response, PFS, and visual outcomes.


Subject(s)
Brain Neoplasms , Neurofibromatosis 1 , Optic Nerve Glioma , Benzimidazoles , Brain Neoplasms/drug therapy , Child , Humans , Optic Nerve Glioma/drug therapy
9.
Sci Rep ; 10(1): 10954, 2020 07 02.
Article in English | MEDLINE | ID: mdl-32616776

ABSTRACT

Children diagnosed with brain tumors have the lowest overall survival of all pediatric cancers. Recent molecular studies have resulted in the discovery of recurrent driver mutations in many pediatric brain tumors. However, despite these molecular advances, the clinical outcomes of high grade tumors, including H3K27M diffuse midline glioma (H3K27M DMG), remain poor. To address the paucity of tissue for biological studies, we have established a comprehensive protocol for the coordination and processing of donated specimens at postmortem. Since 2010, 60 postmortem pediatric brain tumor donations from 26 institutions were coordinated and collected. Patient derived xenograft models and cell cultures were successfully created (76% and 44% of attempts respectively), irrespective of postmortem processing time. Histological analysis of mid-sagittal whole brain sections revealed evidence of treatment response, immune cell infiltration and the migratory path of infiltrating H3K27M DMG cells into other midline structures and cerebral lobes. Sequencing of primary and disseminated tumors confirmed the presence of oncogenic driver mutations and their obligate partners. Our findings highlight the importance of postmortem tissue donations as an invaluable resource to accelerate research, potentially leading to improved outcomes for children with aggressive brain tumors.


Subject(s)
Biomarkers, Tumor/genetics , Brain Neoplasms/pathology , Glioma/pathology , Histones/genetics , Mutation , Adolescent , Adult , Animals , Autopsy , Brain Neoplasms/genetics , Child , Child, Preschool , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Glioma/genetics , Humans , Infant , Male , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays , Young Adult
10.
Neuro Oncol ; 22(11): 1696-1704, 2020 11 26.
Article in English | MEDLINE | ID: mdl-32393959

ABSTRACT

BACKGROUND: Craniopharyngiomas account for approximately 1.2-4% of all CNS tumors. They are typically treated with a combination of surgical resection and focal radiotherapy. Unfortunately, treatment can lead to permanent deleterious effects on behavior, learning, and endocrine function. METHODS: The Pediatric Brain Tumor Consortium performed a multicenter phase 2 study in children and young adults with unresectable or recurrent craniopharyngioma (PBTC-039). Between December 2013 and November 2017, nineteen patients (median age at enrollment, 13.1 y; range, 2-25 y) were enrolled in one of 2 strata: patients previously treated with surgery alone (stratum 1) or who received radiation (stratum 2). RESULTS: Eighteen eligible patients (8 male, 10 female) were treated with weekly subcutaneous pegylated interferon alpha-2b for up to 18 courses (108 wk). Therapy was well tolerated with no grade 4 or 5 toxicities. 2 of the 7 eligible patients (28.6%) in stratum 1 had a partial response, but only one response was sustained for more than 3 months. None of the 11 stratum 2 patients had an objective radiographic response, although median progression-free survival was 19.5 months. CONCLUSIONS: Pegylated interferon alpha-2b treatment, in lieu of or following radiotherapy, was well tolerated in children and young adults with recurrent craniopharyngiomas. Although objective responses were limited, progression-free survival results are encouraging, warranting further studies.


Subject(s)
Brain Neoplasms , Craniopharyngioma , Interferon alpha-2/therapeutic use , Interferon-alpha/therapeutic use , Polyethylene Glycols/therapeutic use , Adolescent , Brain Neoplasms/drug therapy , Brain Neoplasms/radiotherapy , Child , Child, Preschool , Craniopharyngioma/drug therapy , Craniopharyngioma/radiotherapy , Female , Humans , Infant , Male , Pituitary Neoplasms/drug therapy , Pituitary Neoplasms/radiotherapy , Recombinant Proteins/therapeutic use , Treatment Outcome
11.
Lancet Oncol ; 20(7): 1011-1022, 2019 07.
Article in English | MEDLINE | ID: mdl-31151904

ABSTRACT

BACKGROUND: Paediatric low-grade glioma is the most common CNS tumour of childhood. Although overall survival is good, disease often recurs. No single universally accepted treatment exists for these patients; however, standard cytotoxic chemotherapies are generally used. We aimed to assess the activity of selumetinib, a MEK1/2 inhibitor, in these patients. METHODS: The Pediatric Brain Tumor Consortium performed a multicentre, phase 2 study in patients with paediatric low-grade glioma in 11 hospitals in the USA. Patients aged 3-21 years with a Lansky or Karnofsky performance score greater than 60 and the presence of recurrent, refractory, or progressive paediatric low-grade glioma after at least one standard therapy were eligible for inclusion. Patients were assigned to six unique strata according to histology, tumour location, NF1 status, and BRAF aberration status; herein, we report the results of strata 1 and 3. Stratum 1 comprised patients with WHO grade I pilocytic astrocytoma harbouring either one of the two most common BRAF aberrations (KIAA1549-BRAF fusion or the BRAFV600E [Val600Glu] mutation). Stratum 3 comprised patients with any neurofibromatosis type 1 (NF1)-associated paediatric low-grade glioma (WHO grades I and II). Selumetinib was provided as capsules given orally at the recommended phase 2 dose of 25 mg/m2 twice daily in 28-day courses for up to 26 courses. The primary endpoint was the proportion of patients with a stratum-specific objective response (partial response or complete response), as assessed by the local site and sustained for at least 8 weeks. All responses were reviewed centrally. All eligible patients who initiated treatment were evaluable for the activity and toxicity analyses. Although the trial is ongoing in other strata, enrolment and planned follow-up is complete for strata 1 and 3. This trial is registered with ClinicalTrials.gov, number NCT01089101. FINDINGS: Between July 25, 2013, and June 12, 2015, 25 eligible and evaluable patients were accrued to stratum 1, and between Aug 28, 2013, and June 25, 2015, 25 eligible and evaluable patients were accrued to stratum 3. In stratum 1, nine (36% [95% CI 18-57]) of 25 patients achieved a sustained partial response. The median follow-up for the 11 patients who had not had a progression event by Aug 9, 2018, was 36·40 months (IQR 21·72-45·59). In stratum 3, ten (40% [21-61]) of 25 patients achieved a sustained partial response; median follow-up was 48·60 months (IQR 39·14-51·31) for the 17 patients without a progression event by Aug 9, 2018. The most frequent grade 3 or worse adverse events were elevated creatine phosphokinase (five [10%]) and maculopapular rash (five [10%]). No treatment-realted deaths were reported. INTERPRETATION: Selumetinib is active in recurrent, refractory, or progressive pilocytic astrocytoma harbouring common BRAF aberrations and NF1-associated paediatric low-grade glioma. These results show that selumetinib could be an alternative to standard chemotherapy for these subgroups of patients, and have directly led to the development of two Children's Oncology Group phase 3 studies comparing standard chemotherapy to selumetinib in patients with newly diagnosed paediatric low-grade glioma both with and without NF1. FUNDING: National Cancer Institute Cancer Therapy Evaluation Program, the American Lebanese Syrian Associated Charities, and AstraZeneca.


Subject(s)
Benzimidazoles/therapeutic use , Central Nervous System Neoplasms/drug therapy , Glioma/drug therapy , Adolescent , Central Nervous System Neoplasms/genetics , Central Nervous System Neoplasms/pathology , Child , Child, Preschool , Disease Progression , Female , Glioma/genetics , Glioma/pathology , Humans , Male , Neoplasm Grading , Neoplasms, Multiple Primary/pathology , Neurofibromatosis 1/pathology , Proto-Oncogene Proteins B-raf/genetics , Young Adult
12.
Clin Cancer Res ; 24(23): 5850-5859, 2018 12 01.
Article in English | MEDLINE | ID: mdl-30322880

ABSTRACT

PURPOSE: Pediatric diffuse midline glioma (DMG) are highly malignant tumors with poor clinical outcomes. Over 70% of patients with DMG harbor the histone 3 p.K27M (H3K27M) mutation, which correlates with a poorer clinical outcome, and is also used as a criterion for enrollment in clinical trials. Because complete surgical resection of DMG is not an option, biopsy at presentation is feasible, but rebiopsy at time of progression is rare. While imaging and clinical-based disease monitoring is the standard of care, molecular-based longitudinal characterization of these tumors is almost nonexistent. To overcome these hurdles, we examined whether liquid biopsy allows measurement of disease response to precision therapy. EXPERIMENTAL DESIGN: We established a sensitive and specific methodology that detects major driver mutations associated with pediatric DMGs using droplet digital PCR (n = 48 subjects, n = 110 specimens). Quantification of circulating tumor DNA (ctDNA) for H3K27M was used for longitudinal assessment of disease response compared with centrally reviewed MRI data. RESULTS: H3K27M was identified in cerebrospinal fluid (CSF) and plasma in 88% of patients with DMG, with CSF being the most enriched for ctDNA. We demonstrated the feasibility of multiplexing for detection of H3K27M, and additional driver mutations in patient's tumor and matched CSF, maximizing the utility of a single source of liquid biome. A significant decrease in H3K27M plasma ctDNA agreed with MRI assessment of tumor response to radiotherapy in 83% (10/12) of patients. CONCLUSIONS: Our liquid biopsy approach provides a molecularly based tool for tumor characterization, and is the first to indicate clinical utility of ctDNA for longitudinal surveillance of DMGs.


Subject(s)
Biomarkers, Tumor , Brain Neoplasms/diagnosis , Brain Neoplasms/epidemiology , Glioma/diagnosis , Glioma/epidemiology , Liquid Biopsy , Age Factors , Brain Neoplasms/cerebrospinal fluid , Cell-Free Nucleic Acids , Circulating Tumor DNA , Glioma/cerebrospinal fluid , Humans , Liquid Biopsy/methods , Magnetic Resonance Imaging , Molecular Diagnostic Techniques , Mutation , Neoplasm Staging , Public Health Surveillance
13.
Pediatr Blood Cancer ; 65(9): e27217, 2018 09.
Article in English | MEDLINE | ID: mdl-29750396

ABSTRACT

BACKGROUND: This phase 1/2 study (NCT01751308) evaluated cabazitaxel in pediatric patients. Phase 1 determined the maximum tolerated dose (MTD) in patients with recurrent/refractory solid tumors, including central nervous system (CNS) tumors. Phase 2 evaluated activity in pediatric recurrent high-grade glioma (HGG) or diffuse intrinsic pontine glioma (DIPG). PROCEDURE: In phase 1, a 3 + 3 dose-escalation study design was followed. Cabazitaxel was administered at a starting dose of 20 mg/m2 . Dose-limiting toxicities (DLTs) during cycle 1 were assessed to determine the MTD. Tumor response and cabazitaxel pharmacokinetics were also assessed. In phase 2, patients received cabazitaxel at the MTD determined in phase 1. Tumor responses were assessed every 9 weeks (modified Response Assessment in Neuro-oncology criteria). Progression-free survival and cabazitaxel pharmacokinetics were evaluated, and overall survival was estimated. RESULTS: In phase 1, 23 patients were treated, including 19 with CNS tumors. One patient had a partial response; five had stable disease for >3 cycles. Common adverse events included fatigue, diarrhea, nausea and vomiting, febrile neutropenia, and hypersensitivity reactions. Two of three DLTs (febrile neutropenia) occurred with a dose of 35 mg/m2 ; the MTD was 30 mg/m2 . Slightly higher cabazitaxel clearance was observed compared with adult trials. In phase 2, 16 patients (eight HGG and eight DIPG) were enrolled; 11 were evaluable for response and five withdrew (three due to anaphylaxis). All 11 patients progressed within four cycles. No responses were observed; the study was stopped due to futility. CONCLUSIONS: The safety profile of cabazitaxel was consistent with previous studies. The MTD (30 mg/m2 ) was higher than the adult MTD. Cabazitaxel did not demonstrate activity in recurrent/refractory HGG or DIPG.


Subject(s)
Antineoplastic Agents, Phytogenic/therapeutic use , Neoplasms/drug therapy , Taxoids/therapeutic use , Adolescent , Antineoplastic Agents, Phytogenic/administration & dosage , Antineoplastic Agents, Phytogenic/adverse effects , Antineoplastic Agents, Phytogenic/pharmacokinetics , Brain Neoplasms/drug therapy , Child , Child, Preschool , Drug Hypersensitivity/etiology , Female , Gastrointestinal Diseases/chemically induced , Glioma/drug therapy , Hematologic Diseases/chemically induced , Humans , Kaplan-Meier Estimate , Male , Maximum Tolerated Dose , Metabolic Clearance Rate , Neoplasm Recurrence, Local/drug therapy , Progression-Free Survival , Taxoids/administration & dosage , Taxoids/adverse effects , Taxoids/pharmacokinetics , Treatment Failure
14.
Pediatr Blood Cancer ; 65(2)2018 Feb.
Article in English | MEDLINE | ID: mdl-29090526

ABSTRACT

BACKGROUND: We conducted a phase II study of oral capecitabine rapidly disintegrating tablets given concurrently with radiation therapy (RT) to assess progression-free survival (PFS) in children with newly diagnosed diffuse intrinsic pontine gliomas (DIPG). PATIENTS AND METHODS: Children 3-17 years with newly diagnosed DIPG were eligible. Capecitabine, 650 mg/m2 /dose BID (maximum tolerated dose [MTD] in children with concurrent radiation), was administered for 9 weeks starting the first day of RT. Following a 2-week break, three courses of capecitabine, 1,250 mg/m2 /dose BID for 14 days followed by a 7-day rest, were administered. As prospectively designed, 10 evaluable patients treated at the MTD on the phase I trial were included in the phase II analyses. The design was based on comparison of the PFS distribution to a contemporary historical control (n = 140) with 90% power to detect a 15% absolute improvement in the 1-year PFS with a type-1 error rate, α = 0.10. RESULTS: Forty-four patients were evaluable for the phase II objectives. Capecitabine and RT was well tolerated with low-grade palmar plantar erythrodyesthesia, increased alanine aminotransferase, cytopenias, and vomiting the most commonly reported toxicities. Findings were significant for earlier progression with 1-year PFS of 7.21% (SE = 3.47%) in the capecitabine-treated cohort versus 15.59% (SE = 3.05%) in the historical control (P = 0.007), but there was no difference for overall survival (OS) distributions (P = 0.30). Tumor enhancement at diagnosis was associated with shorter PFS and OS. Capecitabine was rapidly absorbed and converted to its metabolites. CONCLUSION: Capecitabine did not improve the outcome for children with newly diagnosed DIPG.


Subject(s)
Brain Stem Neoplasms/therapy , Capecitabine/administration & dosage , Chemoradiotherapy , Glioma/therapy , Administration, Oral , Adolescent , Brain Stem Neoplasms/diagnosis , Child , Child, Preschool , Female , Follow-Up Studies , Glioma/diagnosis , Humans , Male , Prospective Studies , Tablets
15.
Neuro Oncol ; 19(6): 750-761, 2017 06 01.
Article in English | MEDLINE | ID: mdl-27683733

ABSTRACT

For the past decade, it has been recognized that pediatric low-grade gliomas (LGGs) and glial-neuronal tumors carry distinct molecular alterations with resultant aberrant intracellular signaling in the Ras-mitogen-activated protein kinase pathway. The conclusions and recommendations of a consensus conference of how best to integrate the growing body of molecular genetic information into tumor classifications and, more importantly, for future treatment of pediatric LGGs are summarized here. There is uniform agreement that molecular characterization must be incorporated into classification and is increasingly critical for appropriate management. Molecular-targeted therapies should be integrated expeditiously, but also carefully into the management of these tumors and success measured not only by radiographic responses or stability, but also by functional outcomes. These trials need to be carried out with the caveat that the long-term impact of molecularly targeted therapy on the developing nervous system, especially with long duration treatment, is essentially unknown.


Subject(s)
Brain Neoplasms/therapy , Glioma/therapy , Molecular Targeted Therapy , Brain Neoplasms/diagnosis , Brain Neoplasms/genetics , Child , Glioma/diagnosis , Glioma/genetics , Humans , Signal Transduction
16.
J AAPOS ; 20(3): 268-71, 2016 06.
Article in English | MEDLINE | ID: mdl-27108842

ABSTRACT

New therapeutic agents targeting the mitogen-activated protein (MAP) kinase pathway, including MEK inhibitors, are currently being evaluated in phase 1 and 2 clinical trials for pediatric brain tumors. Ophthalmologic side effects from MEK inhibitors have previously only been reported in adults and included retinal vein occlusion, central retinal artery occlusion, and separation of the neurosensory retina. We report 2 patients with optic pathway gliomas who developed outer retinal layer separation visualized by optical coherence tomography while taking the MEK inhibitor selumetinib. After discontinuation of selumetinib, the outer retinal layer separation resolved without visual sequelae. One patient has been retreated with selumetinib and experienced recurrence of these findings.


Subject(s)
Acrylonitrile/analogs & derivatives , Aniline Compounds/adverse effects , Astrocytoma/drug therapy , Benzimidazoles/adverse effects , Glioma/drug therapy , Optic Nerve Neoplasms/drug therapy , Retinal Diseases/chemically induced , Acrylonitrile/adverse effects , Adolescent , Child , Female , Humans , Male , Retinal Diseases/diagnosis , Tomography, Optical Coherence
17.
Cancer Genet ; 208(7-8): 367-73, 2015.
Article in English | MEDLINE | ID: mdl-26206682

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is one of the most lethal pediatric central nervous system (CNS) cancers. Recently, a surge in molecular studies of DIPG has occurred, in large part due to the increased availability of tumor tissue through donation of post-mortem specimens. These new discoveries have established DIPGs as biologically distinct from adult gliomas, harboring unique genomic aberrations. Mutations in histone encoding genes are shown to be associated with >70% of DIPG cases. However, the exact molecular mechanisms of the tumorigenicity of these mutations remain elusive. Understanding the driving mutations and genomic landscape of DIPGs can now guide the development of targeted therapies for this incurable childhood cancer.


Subject(s)
Brain Stem Neoplasms/genetics , Epigenomics , Genetic Predisposition to Disease/genetics , Genomics , Glioma/genetics , Mutation , Brain Stem Neoplasms/pathology , Brain Stem Neoplasms/therapy , Child , Genetic Heterogeneity , Glioma/pathology , Glioma/therapy , Histones/genetics , Humans
18.
Neuro Oncol ; 17(2): 303-11, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25431212

ABSTRACT

BACKGROUND: We sought to estimate the maximum tolerated or recommended phase 2 dose and describe the pharmacokinetics and toxicities of enzastaurin, an oral inhibitor of protein kinase Cß, in children with recurrent central nervous system malignancies. METHODS: Enzastaurin was administered continuously once daily at 3 dose levels (260, 340, and 440 mg/m(2)) and twice daily at 440 mg/m(2)/day. Plasma pharmacokinetics were evaluated following a single dose and at steady state. Inhibition of protein kinase C and Akt cell signaling in peripheral blood mononuclear cells was evaluated. Akt pathway activity was measured in pretreatment tumor samples. RESULTS: Thirty-three patients enrolled; 1 was ineligible, and 3 were nonevaluable secondary to early progressive disease. There were no dose-limiting toxicities during the dose-finding phase. Two participants receiving 440 mg/m(2) given twice daily experienced dose-limiting toxicities of grade 3 thrombocytopenia resulting in delayed start of course 2 and grade 3 alanine transaminase elevation that did not recover within 5 days. There were no grade 4 toxicities during treatment. The concentration of enzastaurin increased with increasing dose and with continuous dosing; however, there was not a significant difference at the 440 mg/m(2) dosing level when enzastaurin was administered once daily versus twice daily. There were no objective responses; however, 11 participants had stable disease >3 cycles, 7 with glioma, 2 with ependymoma, and 2 with brainstem glioma. CONCLUSION: Enzastaurin was well tolerated in children with recurrent CNS malignancies, with chromaturia, fatigue, anemia, thrombocytopenia, and nausea being the most common toxicities. The recommended phase 2 dose is 440 mg/m(2)/day administered once daily.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Central Nervous System Neoplasms/drug therapy , Indoles/administration & dosage , Indoles/pharmacokinetics , Protein Kinase C beta/administration & dosage , Protein Kinase C beta/pharmacokinetics , Administration, Oral , Adolescent , Antineoplastic Agents/adverse effects , Child , Child, Preschool , Dose-Response Relationship, Drug , Female , Humans , Indoles/adverse effects , Male , Phosphorylation , Protein Kinase C beta/adverse effects , Protein Kinase C beta/antagonists & inhibitors , Proto-Oncogene Proteins c-akt/metabolism , Treatment Outcome , Young Adult
19.
JAMA Ophthalmol ; 132(3): 265-71, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24435762

ABSTRACT

IMPORTANCE: Monitoring young children with optic pathway gliomas (OPGs) for visual deterioration can be difficult owing to age-related noncompliance. Optical coherence tomography (OCT) measures of retinal nerve fiber layer (RNFL) thickness have been proposed as a surrogate marker of vision but this technique is also limited by patient cooperation. OBJECTIVE: To determine whether measures of circumpapillary RNFL thickness, acquired with handheld OCT (HH-OCT) during sedation, can differentiate between young children with and without vision loss from OPGs. DESIGN, SETTING, AND PARTICIPANTS: This cross-sectional analysis of a prospective observational study was conducted at a tertiary-care children's hospital. Children with an OPG (sporadic or secondary to neurofibromatosis type 1) who were cooperative for visual acuity testing, but required sedation to complete magnetic resonance imaging, underwent HH-OCT imaging of the circumpapillary RNFL while sedated. MAIN OUTCOMES AND MEASURES: Area under the curve of the receiver operating characteristic, sensitivity, specificity, positive predictive value, and negative predictive value of the average and quadrant-specific RNFL thicknesses. RESULTS: Thirty-three children (64 eyes) met inclusion criteria (median age, 4.8 years; range, 1.8-12.6 years). In children with vision loss (abnormal visual acuity and/or visual field), RNFL thickness was decreased in all quadrants compared with the normal-vision group (P < .001 for all comparisons). Using abnormal criteria of less than 5% and less than 1%, the area under the curve was highest for the average RNFL thickness (0.96 and 0.97, respectively) compared with specific anatomic quadrants. The highest discrimination and predictive values were demonstrated for participants with 2 or more quadrants meeting less than 5% (sensitivity = 93.3; specificity = 97.9; positive predictive value = 93.3; and negative predictive value = 97.9) and less than 1% (sensitivity = 93.3; specificity = 100; positive predictive value = 100; and negative predictive value = 98.0) criteria. CONCLUSIONS AND RELEVANCE: Measures of RNFL thickness acquired with HH-OCT during sedation can differentiate between young children with and without vision loss from OPGs. For young children who do not cooperate with vision testing, HH-OCT measures may be a surrogate marker of vision. Longitudinal studies are needed to delineate the temporal relationship between RNFL decline and vision loss.


Subject(s)
Conscious Sedation , Nerve Fibers/pathology , Optic Nerve Glioma/diagnosis , Optic Nerve Neoplasms/diagnosis , Retinal Ganglion Cells/pathology , Tomography, Optical Coherence , Visual Pathways/pathology , Area Under Curve , Child , Child, Preschool , Cross-Sectional Studies , False Positive Reactions , Female , Humans , Infant , Magnetic Resonance Imaging , Male , Optic Nerve Glioma/physiopathology , Optic Nerve Neoplasms/physiopathology , Predictive Value of Tests , Prospective Studies , Sensitivity and Specificity , Vision Disorders/diagnosis , Vision Disorders/physiopathology , Visual Acuity/physiology , Visual Fields/physiology
20.
Neuro Oncol ; 15(6): 759-66, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23592571

ABSTRACT

BACKGROUND: We conducted a phase I study to estimate the maximum tolerated dose and describe the dose-limiting toxicities and pharmacokinetics of oral capecitabine rapidly disintegrating tablets given concurrently with radiation therapy to children with newly diagnosed brainstem or high-grade gliomas. METHODS: Children 3-21 y with newly diagnosed intrinsic brainstem or high-grade gliomas were eligible for enrollment. The starting dose was 500 mg/m(2), given twice daily, with subsequent cohorts enrolled at 650 mg/m(2) and 850 mg/m(2) using a 3 + 3 phase I design. Children received capecitabine at the assigned dose daily for 9 wks starting from the first day of radiation therapy (RT). Following a 2-wk break, patients received 3 courses of capecitabine 1250 mg/m(2) twice daily for 14 days followed by a 7-day rest. Pharmacokinetic sampling was performed in consenting patients. Six additional patients with intrinsic brainstem gliomas were enrolled at the maximum tolerated dose to further characterize the pharmacokinetic and toxicity profiles. RESULTS: Twenty-four patients were enrolled. Twenty were fully assessable for toxicity. Dose-limiting toxicities were palmar plantar erythroderma (grades 2 and 3) and elevation of alanine aminotransferase (grades 2 and 3). Systemic exposure to capecitabine and metabolites was similar to or slightly lower than predicted based on adult data. CONCLUSIONS: Capecitabine with concurrent RT was generally well tolerated. The recommended phase II capecitabine dose when given with concurrent RT is 650 mg/m(2), administered twice daily. A phase II study to evaluate the efficacy of this regimen in children with intrinsic brainstem gliomas is in progress (PBTC-030).


Subject(s)
Antimetabolites, Antineoplastic/therapeutic use , Brain Stem Neoplasms/therapy , Chemoradiotherapy , Deoxycytidine/analogs & derivatives , Fluorouracil/analogs & derivatives , Glioma/therapy , Tablets , Adolescent , Adult , Antimetabolites, Antineoplastic/pharmacokinetics , Brain Stem Neoplasms/pathology , Capecitabine , Child , Child, Preschool , Deoxycytidine/pharmacokinetics , Deoxycytidine/therapeutic use , Female , Fluorouracil/pharmacokinetics , Fluorouracil/therapeutic use , Glioma/pathology , Humans , Male , Maximum Tolerated Dose , Neoplasm Grading , Prognosis , Radiotherapy Dosage , Survival Rate , Tissue Distribution , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...