Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Mol Cell Endocrinol ; 544: 111556, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35031431

ABSTRACT

Testicular Leydig cells (LCs) are the principal source of circulating testosterone in males. LC steroidogenesis maintains sexual function, fertility and general health, and is influenced by various paracrine factors. The leukemia inhibitory factor receptor (LIFR) is expressed in the testis and activated by different ligands, including leukemia inhibitory factor (LIF), produced by peritubular myoid cells. LIF can modulate LC testosterone production in vitro under certain circumstances, but the role of consolidated signalling through LIFR in adult LC function in vivo has not been established. We used a conditional Lifr allele in combination with adenoviral vectors expressing Cre-recombinase to generate an acute model of LC Lifr-KO in the adult mouse testis, and showed that LC Lifr is not required for short term LC survival or basal steroidogenesis. However, LIFR-signalling negatively regulates steroidogenic enzyme expression and maximal gonadotrophin-stimulated testosterone biosynthesis, expanding our understanding of the intricate regulation of LC steroidogenic function.


Subject(s)
Leydig Cells , Testosterone , Animals , Leukemia Inhibitory Factor/metabolism , Leydig Cells/metabolism , Male , Mice , Receptors, OSM-LIF/metabolism , Testis/metabolism , Testosterone/metabolism
2.
Hum Reprod Update ; 25(4): 397-421, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30869130

ABSTRACT

BACKGROUND: Overall, the incidence of male reproductive disorders has increased in recent decades. Testicular development during fetal life is crucial for subsequent male reproductive function. Non-genomic factors such as environmental chemicals, pharmaceuticals and lifestyle have been proposed to impact on human fetal testicular development resulting in subsequent effects on male reproductive health. Whilst experimental studies using animal models have provided support for this hypothesis, more recently a number of experimental studies using human tissues and cells have begun to translate these findings to determine direct human relevance. OBJECTIVE AND RATIONALE: The objective of this systematic review was to provide a comprehensive description of the evidence for effects of prenatal exposure(s) on human fetal testis development and function. We present the effects of environmental, pharmaceutical and lifestyle factors in experimental systems involving exposure of human fetal testis tissues and cells. Comparison is made with existing epidemiological data primarily derived from a recent meta-analysis. SEARCH METHODS: For identification of experimental studies, PubMed and EMBASE were searched for articles published in English between 01/01/1966 and 13/07/2018 using search terms including 'endocrine disruptor', 'human', 'fetal', 'testis', 'germ cells', 'testosterone' and related search terms. Abstracts were screened for selection of full-text articles for further interrogation. Epidemiological studies involving exposure to the same agents were extracted from a recent systematic review and meta-analysis. Additional studies were identified through screening of bibliographies of full-texts of articles identified through the initial searches. OUTCOMES: A total of 25 experimental studies and 44 epidemiological studies were included. Consistent effects of analgesic and phthalate exposure on human fetal germ cell development are demonstrated in experimental models, correlating with evidence from epidemiological studies and animal models. Furthermore, analgesic-induced reduction in fetal testosterone production, which predisposes to the development of male reproductive disorders, has been reported in studies involving human tissues, which also supports data from animal and epidemiological studies. However, whilst reduced testosterone production has been demonstrated in animal studies following exposure(s) to a variety of environmental chemicals including phthalates and bisphenol A, these effects are not reproduced in experimental approaches using human fetal testis tissues. WIDER IMPLICATIONS: Direct experimental evidence for effects of prenatal exposure(s) on human fetal testis development and function exists. However, for many exposures the data is limited. The increasing use of human-relevant models systems in which to determine the effects of environmental exposure(s) (including mixed exposures) on development and function of human tissues should form an important part of the process for assessment of such exposures by regulatory bodies to take account of animal-human differences in susceptibility.


Subject(s)
Environmental Exposure , Fetal Development/drug effects , Prenatal Exposure Delayed Effects , Testis/drug effects , Testis/embryology , Testis/physiology , Animals , Drug-Related Side Effects and Adverse Reactions/physiopathology , Endocrine Disruptors/toxicity , Environmental Exposure/adverse effects , Environmental Exposure/statistics & numerical data , Female , Humans , Male , Pharmaceutical Preparations , Pregnancy , Prenatal Care/methods , Prenatal Care/statistics & numerical data , Prenatal Exposure Delayed Effects/chemically induced , Prenatal Exposure Delayed Effects/physiopathology , Testosterone/biosynthesis
3.
Reproduction ; 158(5): F1-F14, 2019 11.
Article in English | MEDLINE | ID: mdl-30844751

ABSTRACT

Transplantation of testicular tissues and cells has been proposed as a future clinical option for patients who have had testicular tissue cryopreserved prior to receiving gonadotoxic therapies. Whilst this approach remains experimental, success using animal models and successful transplantation of ovarian tissue resulting in live births in female patients provides optimism for the development of clinical applications involving transplantation of testicular tissue in males. Careful consideration must be given to patient groups that may benefit from this approach in the future. Current research is focused on optimising patient selection, methods for tissue cryopreservation and development of transplantation techniques that might restore sperm production or future fertility in males. Crucially, attention must be focused on ensuring safety of transplantation, including eliminating the potential for infection or re-introducing malignancy. Furthermore the genetic/epigenetic integrity of any gametes generated must be ensured to allow generation of normal offspring. This review will provide an overview of the current status of transplantation of testicular tissue and cells for fertility preservation in males.


Subject(s)
Fertility Preservation/methods , Testis/transplantation , Biopsy/adverse effects , Biopsy/methods , Cryopreservation/methods , Female , Fertility/physiology , Humans , Male , Semen Preservation/methods , Spermatozoa , Testis/pathology , Transplantation, Autologous
4.
Cell Rep ; 25(7): 1924-1937.e4, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30428358

ABSTRACT

Disruption of human fetal testis development is widely accepted to underlie testicular germ cell cancer (TGCC) origin and additional disorders within testicular dysgenesis syndrome (TDS). However, the mechanisms for the development of testicular dysgenesis in humans are unclear. We used ex vivo culture and xenograft approaches to investigate the importance of Nodal and Activin signaling in human fetal testis development. Inhibition of Nodal, and to some extent Activin, signaling disrupted seminiferous cord formation, abolished AMH expression, reduced androgen secretion, and decreased gonocyte numbers. Subsequent xenografting of testicular tissue rescued the disruptive effects on seminiferous cords and somatic cells but not germ cell effects. Stimulation of Nodal signaling increased the number of germ cells expressing pluripotency factors, and these persisted after xenografting. Our findings suggest a key role for Nodal signaling in the regulation of gonocyte differentiation and early human testis development with implications for the understanding of TGCC and TDS origin.


Subject(s)
Nodal Protein/metabolism , Seminiferous Tubules/cytology , Signal Transduction , Spermatozoa/cytology , Spermatozoa/metabolism , Testis/embryology , Activins/metabolism , Benzamides/pharmacology , Dioxoles/pharmacology , Female , Humans , Male , Pregnancy , Pregnancy Trimesters
5.
Hum Reprod ; 33(11): 2107-2121, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30272154

ABSTRACT

STUDY QUESTION: Does loss of DMRT1 in human fetal testis alter testicular development and result in testicular dysgenesis? SUMMARY ANSWER: DMRT1 repression in human fetal testis alters the expression of key testicular and ovarian determining genes, and leads to focal testicular dysgenesis. WHAT IS KNOWN ALREADY: Testicular dysgenesis syndrome (TDS) is associated with common testicular disorders in young men, but its etiology is unknown. DMRT1 has been shown to play a role in the regulation of sex differentiation in the vertebrate gonad. Downregulation of DMRT1 in male mice results in trans-differentiation of Sertoli cells into granulosa (FOXL2+) cells resulting in an ovarian gonadal phenotype. STUDY DESIGN, SIZE, DURATION: To determine the effect of DMRT1 repression on human fetal testes, we developed a novel system for genetic manipulation, which utilizes a Lentivral delivered miRNA during short-term in vitro culture (2 weeks). A long-term (4-6 weeks) ex vivo xenograft model was used to determine the subsequent effects of DMRT1 repression on testicular development and maintenance. We included first and second-trimester testis tissue (8-20 weeks gestation; n = 12) in the study. PARTICIPANTS/MATERIALS, SETTING, METHODS: Human fetal testes were cultured in vitro and exposed to either of two DMRT1 miRNAs (miR536, miR641), or to scrambled control miRNA, for 24 h. This was followed by a further 14 days of culture (n = 3-4), or xenografting (n = 5) into immunocompromised mice for 4-6 weeks. Tissues were analyzed by histology, immunohistochemistry, immunofluorescence and quantitative RT-PCR. Endpoints included histological evaluation of seminiferous cord integrity, mRNA expression of testicular, ovarian and germ cell genes, and assessment of cell number and protein expression for proliferation, apoptosis and pluripotency factors. Statistical analysis was performed using a linear mixed effect model. MAIN RESULTS AND THE ROLE OF CHANCE: DMRT1 repression (miR536/miR641) resulted in a loss of DMRT1 protein expression in a sub-population of Sertoli cells of first trimester (8-11 weeks gestation) human fetal testis; however, this did not affect the completion of seminiferous cord formation or morphological appearance. In second-trimester testis (12-20 weeks gestation), DMRT1 repression (miR536/miR641) resulted in disruption of seminiferous cords with absence of DMRT1 protein expression in Sertoli (SOX9+) cells. No differences in proliferation (Ki67+) were observed and apoptotic cells (CC3+) were rare. Expression of the Sertoli cell associated gene, SOX8, was significantly reduced (miR536, 34% reduction, P = 0.031; miR641 36% reduction, P = 0.026), whilst SOX9 expression was unaffected. Changes in expression of AMH (miR536, 100% increase, P = 0.033), CYP26B1 (miR641, 38% reduction, P = 0.05) and PTGDS (miR642, 30% reduction, P = 0.0076) were also observed. Amongst granulosa cell associated genes, there was a significant downregulation in R-spondin 1 expression (miR536, 76% reduction, P < 0.0001; miR641, 49% reduction, P = 0.046); however, there were no changes in expression of the granulosa cell marker, FOXL2. Analysis of germ cell associated genes demonstrated a significant increase in the expression of the pluripotency gene OCT4 (miR536, 233%, P < 0.001). We used the xenograft system to investigate the longer-term effects of seminiferous cord disruption via DMRT1 repression. As was evident in vitro for second-trimester samples, DMRT1 repression resulted in focal testicular dysgenesis similar to that described in adults with TDS. These dysgenetic areas were devoid of germ cells, whilst expression of FOXL2 within the dysgenetic areas, indicated trans-differentiation from a male (Sertoli cell) to female (granulosa cell) phenotype. LIMITATIONS, REASONS FOR CAUTION: Human fetal testis tissue is a limited resource; however, we were able to demonstrate significant effects of DMRT1 repression on the expression of germ and somatic cell genes, in addition to the induction of focal testicular dysgenesis, using these limited samples. In vitro culture may not reflect all aspects of human fetal testis development and function; however, the concurrent use of the xenograft model which represents a more physiological system supports the validity of the in vitro findings. WIDER IMPLICATIONS OF THE FINDINGS: Our findings have important implications for understanding the role of DMRT1 in human testis development and in the origin of testicular dysgenesis. In addition, we provide validation of a novel system that can be used to determine the effects of repression of genes that have been implicated in gonadal development and associated human reproductive disorders. STUDY FUNDING/COMPETING INTEREST(S): This project was funded by a Wellcome Trust Intermediate Clinical Fellowship (Grant No. 098522) awarded to RTM. LBS was supported by MRC Programme Grant MR/N002970/1. RAA was supported by MRC Programme Grant G1100357/1. RMS was supported by MRC Programme Grant G33253. This work was undertaken in the MRC Centre for Reproductive Health which is funded by the MRC Centre grant MR/N022556/1. The funding bodies had no input into the conduct of the research or the production of this manuscript. The authors have declared no conflicts of interest.


Subject(s)
Gonadal Dysgenesis/embryology , Gonadal Dysgenesis/genetics , Testis/embryology , Transcription Factors/metabolism , Animals , Down-Regulation , Gene Knockdown Techniques , Humans , Male , Mice , Mice, Nude , MicroRNAs , Sertoli Cells/metabolism
6.
FASEB J ; 32(6): 3321-3335, 2018 06.
Article in English | MEDLINE | ID: mdl-29401624

ABSTRACT

The insulin family of growth factors (insulin, IGF1, and IGF2) are critical in sex determination, adrenal differentiation, and testicular function. Notably, the IGF system has been reported to mediate the proliferation of steroidogenic cells. However, the precise role and contribution of the membrane receptors mediating those effects, namely, insulin receptor (INSR) and type-I insulin-like growth factor receptor (IGF1R), have not, to our knowledge, been investigated. We show here that specific deletion of both Insr and Igf1r in steroidogenic cells in mice leads to severe alterations of adrenocortical and testicular development. Double-mutant mice display drastic size reduction of both adrenocortex and testes, with impaired corticosterone, testosterone, and sperm production. Detailed developmental analysis of the testes revealed that fetal Leydig cell (LC) function is normal, but there is a failure of adult LC maturation and steroidogenic function associated with accumulation of progenitor LCs (PLCs). Cell-lineage tracing revealed PLC enrichment is secondary to Insr and Igf1r deletion in differentiated adult LCs, suggesting a feedback mechanism between cells at different steps of differentiation. Taken together, these data reveal the cell-autonomous and nonautonomous roles of the IGF system for proper development and maintenance of steroidogenic lineages.-Neirijnck, Y., Calvel, P., Kilcoyne, K. R., Kühne, F., Stévant, I., Griffeth, R. J., Pitetti, J.-L., Andric, S. A., Hu, M.-C., Pralong, F., Smith, L. B., Nef, S. Insulin and IGF1 receptors are essential for the development and steroidogenic function of adult Leydig cells.


Subject(s)
Cell Differentiation , Leydig Cells/metabolism , Receptor, Insulin/metabolism , Receptors, Somatomedin/metabolism , Stem Cells/metabolism , Adrenal Cortex/cytology , Adrenal Cortex/metabolism , Animals , Corticosterone/genetics , Corticosterone/metabolism , Leydig Cells/cytology , Male , Mice , Mice, Knockout , Receptor, Insulin/genetics , Receptors, Somatomedin/genetics , Stem Cells/cytology , Testosterone/genetics , Testosterone/metabolism
7.
Arch Dis Child ; 102(12): 1169-1175, 2017 12.
Article in English | MEDLINE | ID: mdl-28588045

ABSTRACT

Human male reproductive disorders (cryptorchidism, hypospadias, testicular cancer and low sperm counts) are common and some may be increasing in incidence worldwide. These associated disorders can arise from subnormal testosterone production during fetal life. This has resulted in a focus on in-utero environmental influences that may result in reproductive effects on the offspring in later life. Over recent years, there has been a dramatic increase in the scientific literature describing associations between in-utero environmental exposures (eg, industrial chemicals and pharmaceuticals) and subsequent reproductive outcomes in male offspring. This includes studies investigating a potential role for in-utero analgesic exposure(s) on the fetal testis; however, providing definitive evidence of such effects presents numerous challenges. In this review, we describe an approach to assessing the potential clinical relevance of in-utero (and postnatal) environmental exposures on subsequent male reproductive function using exposure to the analgesic paracetamol as an example.


Subject(s)
Acetaminophen/adverse effects , Analgesics, Non-Narcotic/adverse effects , Genital Diseases, Male/chemically induced , Prenatal Exposure Delayed Effects , Urogenital Abnormalities/chemically induced , Environmental Exposure/adverse effects , Female , Genital Diseases, Male/embryology , Humans , Male , Maternal-Fetal Exchange , Pregnancy , Testis/drug effects , Testis/embryology , Testis/growth & development , Urogenital Abnormalities/embryology
8.
Sci Rep ; 7: 44184, 2017 03 10.
Article in English | MEDLINE | ID: mdl-28281692

ABSTRACT

Among pregnant women ibuprofen is one of the most frequently used pharmaceutical compounds with up to 28% reporting use. Regardless of this, it remains unknown whether ibuprofen could act as an endocrine disruptor as reported for fellow analgesics paracetamol and aspirin. To investigate this, we exposed human fetal testes (7-17 gestational weeks (GW)) to ibuprofen using ex vivo culture and xenograft systems. Ibuprofen suppressed testosterone and Leydig cell hormone INSL3 during culture of 8-9 GW fetal testes with concomitant reduction in expression of the steroidogenic enzymes CYP11A1, CYP17A1 and HSD17B3, and of INSL3. Testosterone was not suppressed in testes from fetuses younger than 8 GW, older than 10-12 GW, or in second trimester xenografted testes (14-17 GW). Ex vivo, ibuprofen also affected Sertoli cell by suppressing AMH production and mRNA expression of AMH, SOX9, DHH, and COL2A1. While PGE2 production was suppressed by ibuprofen, PGD2 production was not. Germ cell transcripts POU5F1, TFAP2C, LIN28A, ALPP and KIT were also reduced by ibuprofen. We conclude that, at concentrations relevant to human exposure and within a particular narrow 'early window' of sensitivity within first trimester, ibuprofen causes direct endocrine disturbances in the human fetal testis and alteration of the germ cell biology.


Subject(s)
Fetus/embryology , Gene Expression Regulation, Developmental/drug effects , Ibuprofen/adverse effects , Organogenesis/drug effects , Testis/embryology , Female , Fetus/pathology , Humans , Ibuprofen/administration & dosage , Male , Pregnancy , Testis/pathology , Testosterone/metabolism
9.
JCI Insight ; 2(6): e91204, 2017 03 23.
Article in English | MEDLINE | ID: mdl-28352662

ABSTRACT

The testicular dysgenesis syndrome (TDS) hypothesis, which proposes that common reproductive disorders of newborn and adult human males may have a common fetal origin, is largely untested. We tested this hypothesis using a rat model involving gestational exposure to dibutyl phthalate (DBP), which suppresses testosterone production by the fetal testis. We evaluated if induction of TDS via testosterone suppression is restricted to the "masculinization programming window" (MPW), as indicated by reduction in anogenital distance (AGD). We show that DBP suppresses fetal testosterone equally during and after the MPW, but only DBP exposure in the MPW causes reduced AGD, focal testicular dysgenesis, and TDS disorders (cryptorchidism, hypospadias, reduced adult testis size, and compensated adult Leydig cell failure). Focal testicular dysgenesis, reduced size of adult male reproductive organs, and TDS disorders and their severity were all strongly associated with reduced AGD. We related our findings to human TDS cases by demonstrating similar focal dysgenetic changes in testes of men with preinvasive germ cell neoplasia (GCNIS) and in testes of DBP-MPW animals. If our results are translatable to humans, they suggest that identification of potential causes of human TDS disorders should focus on exposures during a human MPW equivalent, especially if negatively associated with offspring AGD.


Subject(s)
Gonadal Dysgenesis/chemically induced , Testicular Diseases/chemically induced , Animals , Dibutyl Phthalate/toxicity , Disease Models, Animal , Female , Humans , Male , Maternal Exposure , Plasticizers/toxicity , Rats
10.
Proc Natl Acad Sci U S A ; 111(18): E1924-32, 2014 May 06.
Article in English | MEDLINE | ID: mdl-24753613

ABSTRACT

Fetal growth plays a role in programming of adult cardiometabolic disorders, which in men, are associated with lowered testosterone levels. Fetal growth and fetal androgen exposure can also predetermine testosterone levels in men, although how is unknown, because the adult Leydig cells (ALCs) that produce testosterone do not differentiate until puberty. To explain this conundrum, we hypothesized that stem cells for ALCs must be present in the fetal testis and might be susceptible to programming by fetal androgen exposure during masculinization. To address this hypothesis, we used ALC ablation/regeneration to identify that, in rats, ALCs derive from stem/progenitor cells that express chicken ovalbumin upstream promoter transcription factor II. These stem cells are abundant in the fetal testis of humans and rodents, and lineage tracing in mice shows that they develop into ALCs. The stem cells also express androgen receptors (ARs). Reduction in fetal androgen action through AR KO in mice or dibutyl phthalate (DBP) -induced reduction in intratesticular testosterone in rats reduced ALC stem cell number by ∼40% at birth to adulthood and induced compensated ALC failure (low/normal testosterone and elevated luteinizing hormone). In DBP-exposed males, this failure was probably explained by reduced testicular steroidogenic acute regulatory protein expression, which is associated with increased histone methylation (H3K27me3) in the proximal promoter. Accordingly, ALCs and ALC stem cells immunoexpressed increased H3K27me3, a change that was also evident in ALC stem cells in fetal testes. These studies highlight how a key component of male reproductive development can fundamentally reprogram adult hormone production (through an epigenetic change), which might affect lifetime disease risk.


Subject(s)
Adult Stem Cells/physiology , Androgens/physiology , Fetal Development/physiology , Leydig Cells/physiology , Adult Stem Cells/drug effects , Animals , Callithrix , Cell Lineage/physiology , Dibutyl Phthalate/toxicity , Female , Fetal Development/drug effects , Fetal Stem Cells/drug effects , Fetal Stem Cells/physiology , Humans , In Vitro Techniques , Leydig Cells/drug effects , Luteinizing Hormone/physiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Models, Animal , Pregnancy , Rats , Rats, Transgenic , Rats, Wistar , Receptors, Androgen/deficiency , Receptors, Androgen/genetics , Receptors, Androgen/physiology , Regeneration , Testis/embryology , Testis/physiology , Testosterone/deficiency , Testosterone/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...