Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Phys Condens Matter ; 25(25): 255401, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23719192

ABSTRACT

Crystallization of amorphous Y67Fe33 into the YFe2 C15 Laves phase via a novel 'YFe' intermediate phase has been observed through to completion using time-resolved small angle neutron scattering (SANS). The nucleation and growth kinetics of the phase transformations have been studied at annealing temperatures below the crystallization temperatures for both the 'YFe' phase and the YFe2 phase. The SANS results agree with previously reported neutron diffraction and SANS data. At the annealing temperatures of 360, 370 and 380 °C, changes in the scattering intensity I(Q) occur as a result of the contrast between the amorphous matrix and the nucleating and growing Y and 'YFe' phases. Critical scattering occurs during each of the isotherms, relating to the full crystallization of Y67Fe33, and extrapolation gives a crystallization temperature of 382 °C. Beyond critical scattering, isotherms at 435, 450, and 465 °C reveal the details of the continuing transformation of the 'YFe' intermediate phase into the YFe2 C15 Laves phase.

2.
Biomed Mater ; 2(2): 151-7, 2007 Jun.
Article in English | MEDLINE | ID: mdl-18458449

ABSTRACT

Bioactive fluormica-fluorapatite glass-ceramic materials offer a very encouraging solution to the problem of efficient restoration and reconstruction of hard tissues. To produce material with the desired crystalline phases, a five-stage heat treatment must be performed. This thermal processing has a large impact on the microstructure and ultimately the final mechanical properties of the materials. We have examined the thermal processing of one of our most promising machinable biomaterials, using time-resolved small angle neutron scattering and neutron diffraction to study the nucleation and growth of crystallites. The processing route had already been optimized by studying the properties of quenched samples using x-ray diffraction, mechanical measurements and differential thermal analysis. However these results show that the heat treatment can be further optimized in terms of crystal nucleation, and we show that these techniques are the only methods by which a truly optimized thermal processing route may be obtained.


Subject(s)
Biocompatible Materials/chemistry , Ceramics/chemistry , Crystallization/methods , Glass/chemistry , Neutron Diffraction/methods , Scattering, Small Angle , Kinetics , Materials Testing , Molecular Conformation , Phase Transition
3.
J Phys Condens Matter ; 18(32): 7751-9, 2006 Aug 16.
Article in English | MEDLINE | ID: mdl-21690885

ABSTRACT

We present an overview of two leading methods of determining probability distributions from Mössbauer spectra, using the model amorphous magnet Fe(80)B(20). A comparison is made between the maximum-entropy method, which permits analysis using truly arbitrary parameter probability distributions, and a Voigtian-based analysis, which uses a sum of Gaussian components to create parameter distributions of pseudo-arbitrary shape. Our results indicate that, in Fe(80)B(20), a Gaussian distribution of magnetic hyperfine fields is a very good approximation, although small deviations from a Gaussian shape are evident. We find that the apparent existence of correlations between the isomer shift and magnetic hyperfine field parameters, as found using Voigt-based analyses, may be an artefact of imposing a Gaussian shape on the parameter distributions. We conclude that maximum entropy and Voigtian analyses together provide a very powerful means of characterizing magnetic materials with Mössbauer spectroscopy.

SELECTION OF CITATIONS
SEARCH DETAIL