Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 146(33): 23582-23590, 2024 Aug 21.
Article in English | MEDLINE | ID: mdl-39101632

ABSTRACT

Organic color centers (OCCs), generated by the covalent functionalization of single-walled carbon nanotubes, have been exploited for chemical sensing, bioimaging, and quantum technologies. However, monovalent OCCs can assume at least 6 different bonding configurations on the sp2 carbon lattice of a chiral nanotube, resulting in heterogeneous OCC photoluminescence emissions. Herein, we show that a heat-activated [2 + 2] cycloaddition reaction enables the synthesis of divalent OCCs with a reduced number of atomic bonding configurations. The chemistry occurs by simply mixing enophile molecules (e.g., methylmaleimide, maleic anhydride, and 4-cyclopentene-1,3-dione) with an ethylene glycol suspension of SWCNTs at elevated temperature (70-140 °C). Unlike monovalent OCC chemistries, we observe just three OCC emission peaks that can be assigned to the three possible bonding configurations of the divalent OCCs based on density functional theory calculations. Notably, these OCC photoluminescence peaks can be controlled by temperature to decrease the emission heterogeneity even further. This divalent chemistry provides a scalable way to synthesize OCCs with tightly controlled emissions for emerging applications.

2.
Mater Horiz ; 11(15): 3613-3622, 2024 Jul 29.
Article in English | MEDLINE | ID: mdl-38747524

ABSTRACT

Electrides are a class of materials consisting of non-nuclear excess electrons as quasi-F centers or Farbe centers within a positively charged lattice framework, and have significant applications in the fields of electrochemistry, spintronics, and electrode materials. Using first-principles quantum mechanical calculations, we have demonstrated exotic electronic structures of zirconium-rich electrides, Zr2X (X = O, Se, and Te), and obtained the quantitative values of charge transfer (oxidation states), and projected density of states associated with the localized quasi F-centers. The localized interstitial anionic electrons exhibit significant charge transfer values of approximately -1.88, -2.01, and -1.79 per atom in Zr2O, Zr2Se, and Zr2Te, respectively, and contribute actively in the electronic band structures and density of states at the Fermi level. From the 2D contour plot of the electron localization function (ELF), it has been predicted that the spatial distribution of the quasi-F centers stabilizes in the form of a one-dimensional pattern, with localized ELF sites interconnected with delocalized electron channels. Further, low work-function values of Zr2X, ranging from 2.7-3.4 eV, confirm the electride properties of these binary compounds, promising applications in electro-catalytic oxidations and anode materials in batteries. These unique electronic properties of anionic electrons free from nuclear binding in Zr2X have not been reported yet in the literature.

3.
J Phys Chem Lett ; 15(2): 471-480, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38190332

ABSTRACT

Various coordination complexes have been the subject of experimental and theoretical studies in recent decades because of their fascinating photophysical properties. In this work, a combined experimental and computational approach was applied to investigate the optical properties of monocationic Ir(III) complexes. An interpretative machine learning-based quantitative structure-property relationship (ML/QSPR) model was successfully developed that could reliably predict the emission wavelength of the Ir(III) complexes and provide a foundation for the theoretical evaluation of the optical properties of Ir(III) complexes. A hypothesis was proposed to explain the differences in the emission wavelengths between structurally different individual Ir(III) complexes. The efficacy of the developed model was demonstrated by high R2 values of 0.84 and 0.87 for the training and test sets, respectively. It is worth noting that a relationship between the N-N distance in the diimine ligands of the Ir(III) complexes and emission wavelengths is detected. This effect is most probably associated with a degree of distortion in the octahedral geometry of the complexes, resulting in a perturbed ligand field. This combined experimental and computational approach shows great potential for the rational design of new Ir(III) complexes with the desired optical properties. Moreover, the developed methodology could be extended to other transition-metal complexes.

4.
J Phys Chem Lett ; 13(39): 9210-9220, 2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36170557

ABSTRACT

Using non-adiabatic dynamics and Redfield theory, we predicted the optical spectra, radiative and nonradiative decay rates, and photoluminescence quantum yields (PLQYs) for In(III) dipyrrin-based complexes (i) with electron-withdrawing (EW) or electron-donating (ED) substituents on the meso-phenyl group and (ii) upon fusing the pyrrin and phenyl rings via saturated or unsaturated bridging to increase structural rigidity. The ED groups lead to a primary π,π* character with a minor intraligand charge transfer (ILCT) contribution to the emissive state, while EW groups increase the ILCT contribution and red-shift the luminescence to ∼1.5 eV. Saturated annulation enhances the PLQYs for complexes with primary π,π* character compared to those of the non-annulated and unsaturated-annulated complexes, while both unsaturated and saturated annulation decrease the PLQYs for complexes with primary ILCT character. We found that PLQY improvement goes beyond a simple concept of structural rigidity. In contrast, the charge transfer character of excitonic states is a key parameter for engineering the NIR emission of In(III) dipyrrin complexes.

5.
Dalton Trans ; 51(36): 13858-13866, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36040117

ABSTRACT

The synthesis, photophysics, and electrochemiluminescence (ECL) of four water-soluble dinuclear Ir(III) and Ru(II) complexes (1-4) terminally-capped by 4'-phenyl-2,2':6',2''-terpyridine (tpy) or 1,3-di(pyrid-2-yl)-4,6-dimethylbenzene (N^C^N) ligands and linked by a 2,7-bis(2,2':6',2''-terpyridyl)fluorene with oligoether chains on C9 are reported. The impact of the tpy or N^C^N ligands and metal centers on the photophysical properties of 1-4 was assessed by spectroscopic methods including UV-vis absorption, emission, and transient absorption, and by time-dependent density functional theory (TDDFT) calculations. These complexes exhibited distinct singlet and triplet excited-state properties upon variation of the terminal-capping terdentate ligands and the metal centers. The ECL properties of complexes 1-3 with better water solubility were investigated in neutral phosphate buffer solutions (PBS) by adding tripropylamine (TPA) as a co-reactant, and the observed ECL intensity followed the descending order of 3 > 1 > 2. Complex 3 bearing the [Ru(tpy)2]2+ units displayed more pronounced ECL signals, giving its analogues great potential for further ECL study.

6.
Nat Commun ; 13(1): 4439, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35915090

ABSTRACT

Incorporating fluorescent quantum defects in the sidewalls of semiconducting single-wall carbon nanotubes (SWCNTs) through chemical reaction is an emerging route to predictably modify nanotube electronic structures and develop advanced photonic functionality. Applications such as room-temperature single-photon emission and high-contrast bio-imaging have been advanced through aryl-functionalized SWCNTs, in which the binding configurations of the aryl group define the energies of the emitting states. However, the chemistry of binding with atomic precision at the single-bond level and tunable control over the binding configurations are yet to be achieved. Here, we explore recently reported photosynthetic protocol and find that it can control chemical binding configurations of quantum defects, which are often referred to as organic color centers, through the spin multiplicity of photoexcited intermediates. Specifically, photoexcited aromatics react with SWCNT sidewalls to undergo a singlet-state pathway in the presence of dissolved oxygen, leading to ortho binding configurations of the aryl group on the nanotube. In contrast, the oxygen-free photoreaction activates previously inaccessible para configurations through a triplet-state mechanism. These experimental results are corroborated by first principles simulations. Such spin-selective photochemistry diversifies SWCNT emission tunability by controlling the morphology of the emitting sites.

7.
J Phys Chem Lett ; 13(6): 1416-1423, 2022 Feb 17.
Article in English | MEDLINE | ID: mdl-35119280

ABSTRACT

Semiconductor nanocrystals (NCs) have emerged as promising photocatalysts. However, NCs are often functionalized with complex ligand shells that contain not only charge acceptors but also other "spectator ligands" that control NC solubility and affinity for target reactants. Here, we show that spectator ligands are not passive observers of photoinduced charge transfer but rather play an active role in this process. We find the rate of electron transfer from quantum-confined PbS NCs to perylenediimide acceptors can be varied by over a factor of 4 simply by coordinating cinnamate ligands with distinct dipole moments to NC surfaces. Theoretical calculations indicate this rate variation stems from both ligand-induced changes in the free energy for charge transfer and electrostatic interactions that alter perylenediimide electron acceptor orientation on NC surfaces. Our work shows NC-to-molecule charge transfer can be fine-tuned through ligand shell design, giving researchers an additional handle for enhancing NC photocatalysis.

8.
Dalton Trans ; 50(40): 14309-14319, 2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34558585

ABSTRACT

The synthesis, photophysics and reverse saturable absorption of two cationic dinuclear Ir(III) complexes bearing fluorenyl-tethered 2-(quinolin-2-yl)quinoxaline (quqo) ligands are reported in this paper. The two complexes possess intense and featureless diimine ligand localized 1ILCT (intraligand charge transfer)/1π,π* absorption bands at ca. 330 and 430 nm, and a weak 1,3MLCT (metal-to-ligand charge transfer)/1,3LLCT (ligand-to-ligand charge transfer) absorption band at >500 nm. Both complexes exhibit weak dual phosphorescence at ca. 590 nm and 710 nm, which are attributed to the 3ILCT/3π,π* and 3MLCT/3LLCT states, respectively. The low-energy 3MLCT/3LLCT state also gives rise to a moderately strong triplet excited-state absorption at 490-800 nm. Because of the stronger triplet excited-state absorption than the ground-state absorption of these complexes at 532 nm, both complexes manifest a moderate reverse saturable absorption (RSA) at 532 nm for ns laser pulses. Expansion of the π-conjugation of the fluorenyl-tethered diimine ligand in Ir-1 causes a slight red-shift of the 1ILCT/1π,π* absorption bands in its UV-vis absorption spectrum and the 3MLCT/3LLCT absorption band in the transient absorption spectrum and slightly enhances the RSA at 532 nm compared to that in Ir-2. This work represents the first report on dinuclear Ir(III) complexes that exhibit RSA at 532 nm.

9.
Inorg Chem ; 60(20): 15278-15290, 2021 Oct 18.
Article in English | MEDLINE | ID: mdl-34581183

ABSTRACT

The synthesis and photophysics (UV-vis absorption, emission, and transient absorption) of four neutral heteroleptic cyclometalated iridium(III) complexes (Ir-1-Ir-4) incorporating thiophene/selenophene-diketopyrrolopyrrole (DPP)-substituted N-heterocyclic carbene (NHC) ancillary ligands are reported. The effects of thiophene versus selenophene substitution on DPP and bis- versus monoiridium(III) complexation on the photophysics of these complexes were systematically investigated via spectroscopic techniques and density functional theory calculations. All complexes exhibited strong vibronically resolved absorption in the regions of 500-700 nm and fluorescence at 600-770 nm, and both are predominantly originated from the DPP-NHC ligand. Complexation induced a pronounced red shift of this low-energy absorption band and the fluorescence band with respect to their corresponding ligands due to the improved planarity and extended π-conjugation in the DPP-NHC ligand. Replacing the thiophene units by selenophenes and/or biscomplexation led to the red-shifted absorption and fluorescence spectra, accompanied by the reduced fluorescence lifetime and quantum yield and enhanced population of the triplet excited states, as reflected by the stronger triplet excited-state absorption and singlet oxygen generation.

10.
J Phys Chem Lett ; 12(33): 8009-8015, 2021 Aug 26.
Article in English | MEDLINE | ID: mdl-34433275

ABSTRACT

The absorption and fluorescence spectra of 14 In(III) dipyrrin-based complexes are studied using time-dependent density functional theory (TDDFT). Calculations confirm that both heteroatom substitution of oxygen (N2O2-type) by nitrogen (N4-type) in dipyrrin ligand and functionalization at the meso-position by aromatic rings with strong electron-withdrawing (EW) substituents or extended π-conjugation are efficient tools in extending the fluorescence spectra of In(III) complexes to the near-infrared (NIR) region of 750-960 nm and in red-shifting the lowest absorption band to 560-630 nm. For all complexes, the emissive singlet state has π-π* character with a small addition of intraligand charge transfer (ILCT) contributing from the meso-aryl substituents to the dipyrrin ligand. Stronger EW nitro group on the meso-phenyl or meso-aryl group with extended π-conjugation induces red-shifted electronic absorption and fluorescence. More tetrahedral geometry of the complexes with N4-type ligands leads to less intensive but more red-shifted fluorescence to NIR, compared to the corresponding complexes with N2O2-type ligands that have a more planar geometry.

11.
J Phys Chem Lett ; 12(32): 7846-7853, 2021 Aug 19.
Article in English | MEDLINE | ID: mdl-34380317

ABSTRACT

Covalent functionalization of single-walled carbon nanotubes (SWCNTs) with organic molecules results in red-shifted emissive states associated with sp3-defects in the tube lattice, which facilitate their improved optical functionality, including single-photon emission. The energy of the defect-based electronic excitations (excitons) depends on the molecular adducts, the configuration of the defect, and concentration of defects. Here we model the interactions between two sp3-defects placed at various distances in the (6,5) SWCNT using time-dependent density functional theory. Calculations reveal that these interactions conform to the effective model of J-aggregates for well-spaced defects (>2 nm), leading to a red-shifted and optically allowed (bright) lowest energy exciton. H-aggregate behavior is not observed for any defect orientations, which is beneficial for emission. The splitting between the lowest energy bright and optically forbidden (dark) excitons and the pristine excitonic band are controlled by the single-defect configurations and their axial separation. These findings enable a synthetic design strategy for SWCNTs with tunable near-infrared emission.

12.
J Phys Chem Lett ; 12(31): 7504-7511, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34342460

ABSTRACT

We provide a case-study for thermal grafting of benzenediazonium bromide onto a hydrogenated Si(111) surface using ab initio molecular dynamics (AIMD) calculations. A sequence of reaction steps is identified in the AIMD trajectory, including the loss of N2 from the diazonium salt, proton transfer from the surface to the bromide ion that eliminates HBr, and deposition of the phenyl group onto the surface. We next assess the influence of the phenyl groups on photophysics of hydrogen-terminated Si(111) slabs. The nonadiabatic couplings necessary for a description of the excited-state dynamics are calculated by combining ab initio electronic structures and reduced density matrix formalism with Redfield theory. The phenyl-terminated slab shows reduced nonradiative relaxation and recombination rates of hot charge carriers in comparison with the hydrogen-terminated slab. Altogether, our results provide atomistic insights revealing that (i) the diazonium salt thermally decomposes at the surface allowing the formation of covalently bonded phenyl group, and (ii) the coverage of phenyl groups on the surface slows down charge carrier cooling driven by electron-phonon interactions, which increases photoluminescence efficiency at the near-infrared spectral region.

13.
Inorg Chem ; 59(23): 17096-17108, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33170657

ABSTRACT

Five mono/di/trinuclear iridium(III) complexes (1-5) bearing the carbazole-derivative-tethered 2-(quinolin-2-yl)quinoxaline (quqo) diimine (N^N) ligand were synthesized and characterized. The photophysical properties of these complexes and their corresponding diimine ligands were systematically studied via UV-vis absorption, emission, and transient absorption (TA) spectroscopy and simulated by time-dependent density functional theory. All complexes possessed strong well-resolved absorption bands at <400 nm that have predominant ligand-based 1π,π* transitions and broad structureless charge-transfer (1CT) absorption bands at 400-700 nm. The energies or intensities of these 1CT bands varied pronouncedly when the number of tethered Ir(quqo)(piq)2+ (piq refers to 1-phenylisoquinoline) units, π conjugation of the carbazole derivative linker, or attachment positions on the carbazole linker were altered. All complexes were emissive at room temperature, with 1-3 showing near-IR (NIR) 3MLCT (metal-to-ligand charge-transfer)/3LLCT (ligand-to-ligand charge-transfer) emission at ∼710 nm and 4 and 5 exhibiting red or NIR 3ILCT (intraligand charge-transfer)/3LMCT (ligand-to-metal charge-transfer) emission in CH2Cl2. In CH3CN, 1-3 displayed an additional emission band at ca. 590 nm (3ILCT/3LMCT/3MLCT/3π,π* in nature) in addition to the 710 nm band. The different natures of the emitting states of 1-3 versus those of 4 and 5 also gave rise to different spectral features in their triplet TA spectra. It appears that the parentage and characteristics of the lowest triplet excited states in these complexes are mainly impacted by the π systems of the bridging carbazole derivatives and essentially no interactions among the Ir(quqo)(piq)2+ units. In addition, all of the diimine ligands tethered by the carbazole derivatives displayed a dramatic solvatochromic effect in their emission due to the predominant intramolecular charge-transfer nature of their emitting states. Aggregation-enhanced emission was also observed from the mixed CH2Cl2/ethyl acetate or CH2Cl2/hexane solutions of these ligands.

14.
J Phys Chem A ; 124(43): 8931-8942, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33079551

ABSTRACT

DNA-wrapped silver nanoclusters (DNA-AgNCs) are known for their efficient luminescence. However, their emission is highly sensitive to the DNA sequence, the cluster size, and its charge state. To get better insights into photophysics of these hybrid systems, simulations based on density functional theory (DFT) are performed. Our calculations elucidate the effect of the structural conformations, charges, solvent polarity, and passivating bases on optical spectra of DNA-AgNCs containing five and six Ag atoms. It is found that inclusion of water in calculations as a polar solvent media results in stabilization of nonplanar conformations of base-passivated clusters, while their planar conformations are more stable in vacuum, similar to the bare Ag5 and Ag6 clusters. Cytosines and guanines interact with the cluster twice stronger than thymines, due to their larger dipole moments. In addition to the base-cluster interactions, hydrogen bonds between bases notably contribute to the structure stabilization. While the relative intensity, line width, and the energy of absorption peaks are slightly changing depending on the cluster charge, conformations, and base types, the overall spectral shape with five well-resolved bands at 2.5-5.5 eV is consistent for all structures. Independent of the passivating bases and the cluster size and charge, the low energy optical transitions at 2.5-3.5 eV exhibit a metal to ligand charge transfer (MLCT) character with the main contribution emerging from Ag-core to the bases. Cytosines facilitate the MLCT character to a larger degree comparing to the other bases. However, the doublet transitions in clusters with the open shell electronic structure (Ag5 and Ag6+) result in appearance of additional red-shifted (<2.5 eV) and optically weak band with negligible MLCT character. The passivated clusters with the closed shell electronic structure (Ag5+ and Ag6) exhibit higher optical intensity of their lowest transitions with much higher MLCT contribution, thus having better potential for emission, than their open shell counterparts.

15.
Acc Chem Res ; 53(9): 1791-1801, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32805109

ABSTRACT

ConspectusSingle-walled carbon nanotubes (SWCNTs) show promise as light sources for modern fiber optical communications due to their emission wavelengths tunable via chirality and diameter dependency. However, the emission quantum yields are relatively low owing to the existence of low-lying dark electronic states and fast excitonic diffusion leading to carrier quenching at defects. Covalent functionalization of SWCNTs addresses this problem by brightening their infrared emission. Namely, introduction of sp3-hybridized defects makes the lowest energy transitions optically active for some defect geometries and enables further control of their optical properties. Such functionalized SWCNTs are currently the only material exhibiting room-temperature single photon emission at telecom relevant infrared wavelengths. While this fluorescence is strong and has the right wavelength, functionalization introduces a variety of emission peaks resulting in spectrally broad inhomogeneous photoluminescence that prohibits the use of SWCNTs in practical applications. Consequently, there is a strong need to control the emission diversity in order to render these materials useful for applications. Recent experimental and computational work has attributed the emissive diversity to the presence of multiple localized defect geometries each resulting in distinct emission energy. This Account outlines methods by which the morphology of the defect in functionalized SWCNTs can be controlled to reduce emissive diversity and to tune the fluorescence wavelengths. The chirality-dependent trends of emission energies with respect to individual defect morphologies are explored. It is demonstrated that defect geometries originating from functionalization of SWCNT carbon atoms along bonds with strong π-orbital mismatch are favorable. Furthermore, the effect of controlling the defect itself through use of different chemical groups is also discussed. Such tunability is enabled due to the formation of specific defect geometries in close proximity to other existing defects. This takes advantage of the changes in π-orbital mismatch enforced by existing defects and the resulting changes in reactivities toward formation of specific defect morphologies. Furthermore, the trends in emissive energies are highly dependent on the value of mod(n-m,3) for an (n,m) tube chirality. These powerful concepts allow for a targeted formation of defects that emit at desired energies based on SWCNT single chirality enriched samples. Finally, the impact of functionalization with specific types of defects that enforce certain defect geometries due to steric constraints in bond lengths and angles to the SWCNT are discussed. We further relate to a similar effect that is present in systems where high density of surface defects is formed due to high reactant concentration. The outlined strategies suggested by simulations are instrumental in guiding experimental efforts toward the generation of functionalized SWCNTs with tunable emission energies.

16.
ACS Appl Mater Interfaces ; 12(32): 36513-36522, 2020 Aug 12.
Article in English | MEDLINE | ID: mdl-32672929

ABSTRACT

Bulk-scale syntheses of sp2 nanocarbon have typically been generated by extensive chemical oxidation to yield graphite oxide from graphite, followed by a reductive step. Materials generated via harsh random processes lose desirable physical characteristics. Loss of sp2 conjugation inhibits long-range electronic transport and the potential for electronic band manipulation. Here, we present a nanopatterned holey graphene material electronically hybridized with metal-containing nanoparticles. Oxidative plasma etching of highly ordered pyrolytic graphite via previously developed covalent organic framework (COF)-5-templated patterning yields bulk-scale materials for electrocatalytic applications and fundamental investigations into band structure engineering of nanocomposites. We establish a broad ability (Ag, Au, Cu, and Ni) to grow metal-containing nanoparticles in patterned holes in a metal precursor-dependent manner without a reducing agent. Graphene nanoparticle compounds (GNCs) show metal-contingent changes in the valence band structure. Density functional theory investigations reveal preferences for uncharged metal states, metal contributions to the valence band, and embedding of nanoparticles over surface incorporation. Ni-GNCs show activity for oxygen evolution reaction in alkaline media (1 M KOH). Electrocatalytic activity exceeds 10,000 mA/mg of Ni, shows stability for 2 h of continuous operation, and is kinetically consistent via a Tafel slope with Ni(OH)2-based catalysis.

17.
Inorg Chem ; 59(12): 8532-8542, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32497429

ABSTRACT

Extending the bandwidth of triplet excited-state absorption in transition-metal complexes is appealing for developing broadband reverse saturable absorbers. Targeting this goal, five bis-terdentate iridium(III) complexes (Ir1-Ir5) bearing trans-bis-cyclometalating (C^N^C) and 4'-R-2,2':6',2″-terpyridine (4'-R-tpy) ligands were synthesized. The effects of the structural variation in cyclometalating ligands and substituents at the tpy ligand on the photophysics of these complexes have been systematically explored using spectroscopic methods (i.e., UV-vis absorption, emission, and transient absorption spectroscopy) and time-dependent density functional theory (TDDFT) calculations. All complexes exhibited intensely structured 1π,π* absorption bands at <400 nm and broad charge transfer (1CT)/1π,π* transitions at 400-600 nm. Ligand structural variations exerted a very small effect on the energies of the 1CT/1π,π* transitions; however, they had a significant effect on the molar extinction coefficients of these absorption bands. All complexes emitted featureless deep red phosphorescence in solutions at room temperature and gave broad-band and strong triplet excited-state absorption ranging from the visible to the near-infrared (NIR) spectral regions, with both originating from the 3π,π*/3CT states. Although alteration of the ligand structures influenced the emission energies slightly, these changes significantly affected the emission lifetimes and quantum yields, transient absorption spectral features, and the triplet excited-state quantum yields of the complexes. Except for Ir3, the other four complexes all manifested reverse saturable absorption (RSA) upon nanosecond laser pulse excitation at 532 nm, with the decreasing trend of RSA following Ir2 ≈ Ir4 > Ir1 > Ir5 > Ir3. The RSA trend corresponded well with the strength of the excited-state and ground-state absorption differences (ΔOD) at 532 nm for these complexes.

18.
J Phys Chem Lett ; 11(11): 4269-4278, 2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32354213

ABSTRACT

We study the impact of the chemical composition on phonon-mediated exciton relaxation in the core/shell quantum dots (QDs), with 1 nm core made of PbX and the monolayer shell made of CdX, where X = S and Se. For this, time-domain nonadiabatic molecular dynamics (NAMD) based on density functional theory (DFT) and surface hopping techniques are applied. Simulations reveal twice faster energy relaxation in PbS/CdS than PbSe/CdSe because of dominant couplings to higher-energy optical phonons in structures with sulfur anions. For both QDs, the long-living intermediate states associated with the core-shell interface govern the dynamics. Therefore, a simple exponential model is not appropriate, and the four-state irreversible kinetic model is suggested instead, predicting 0.9 and 0.5 ps relaxation rates in PbSe/CdSe and PbS/CdS QDs, respectively. Thus, 2 nm PdSe/CdSe QDs with a single monolayer shell exhibit the phonon-mediated relaxation time sufficient for carrier multiplications to outpace energy dissipation and benefit the solar conversion efficiency.

19.
ACS Appl Bio Mater ; 3(9): 6025-6038, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-35021831

ABSTRACT

Three heteroleptic bis-terpyridine ruthenium(II) complexes (Ru1-Ru3) [Ru(tpy-R1)(tpy-R2)]2+ (tpy = 2,2':6',2″-terpyridine, R1/R2 = phenyl, 4-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}phenyl, pyren-1-yl, or 4-phenyl-BODIPY (boron dipyrromethene)) were synthesized and investigated for their potential applications as photosensitizers (PSs) for photodynamic therapy. All complexes displayed broad and intense absorption band in the green spectral regions (450-600 nm), which arose from the spin-allowed charge-transfer transitions mixed with ligand-localized 1π,π* transitions. All complexes show weak green emission at 513-549 nm and/or even weaker red emission at 646-674 nm at room temperature depending on the excitation wavelength and the solvent used. Incorporating the BODIPY motif to the 4'-position of one of the tpy ligands in Ru2 and Ru3 drastically prolonged the lifetimes of the lowest triplet excited states (T1) of Ru2 and Ru3 to tens of microseconds. This promoted the singlet oxygen formation sensitized by Ru2 and Ru3 upon green light activation, which in turn induced significant photocytotoxicity toward the A549 human lung cancer cell line with an EC50 value of 1.50 µM for Ru2 and 7.41 µM for Ru3 under 0.48 J·cm-2 500 nm light irradiation. Laser confocal scanning microscopy imaging revealed that Ru2 mainly distributed to lysosomes upon cell uptake. Upon 500 nm light activation, Ru2 induced lysosomal damage and subsequent mitochondrial membrane potential decrease. The dominant cell death pathway was apoptosis. These results demonstrated the potential utilization of [Ru(tpy-R1)(tpy-R2)]2+ complexes as PSs for PDT.

20.
ACS Appl Bio Mater ; 2(7): 2964-2977, 2019 Jul 15.
Article in English | MEDLINE | ID: mdl-31844844

ABSTRACT

Six homo- or heteroleptic tricationic Ir(R1-tpy)(R2-tpy)3+ complexes (Ir1-Ir6, R1/R2 = Ph, 4'-N(CH3)2Ph, pyren-1-yl, or 4'-{2-[2-(2-methoxyethoxy)ethoxy]ethoxy}Ph, tpy = 2,2';6',2"-terpyridine) were synthesized and tested for photodynamic therapy (PDT) effects. The ground- and excited-state characteristics of these complexes were studied systematically via spectroscopic methods and quantum chemistry calculations. All complexes possessed intraligand charge transfer (1ILCT) / metal-to-ligand charge transfer (1MLCT) dominated transition(s) in their low-energy absorption bands, which red-shifted with the increased electron-releasing strength of the R1/R2 substituent. Five of the complexes exhibited ligand-centered 3 π,π*/3ILCT/3MLCT emission. With a stronger electron-releasing R1/R2 substituent, the degree of charge transfer contribution increased, leading to a decrease of the emission quantum yield. When the 4'-N(CH3)2Ph substituent was introduced on both tpy ligands, the emission of Ir3 was completely quenched. Our study on the transient absorption of these complexes demonstrated that they all possessed broadband triplet excited-state absorption in the 400-800 nm region. Pyrenyl substitution of one or more tpy ligands, as in Ir4 and Ir5, increased the lifetimes of the lowest triplet excited state and the singlet oxygen (1O2) production efficiencies. Ir1-Ir5 were nontoxic toward SK-MEL-28 cells, with photocytotoxicities that varied from 0.18 to 153 µM. Among them, Ir4 had the highest 1O2 quantum yield (0.81) in cell-free conditions, showing the largest photocytotoxicity against SK-MEL-28 cells for Ir(III) PSs to date, and was the most efficient generator of reactive oxygen species (ROS) in vitro. Ir4 possessed a very large phototherapeutic index (PI = dark EC50 / light EC50) of >1657, the largest reported for an Ir(III) complex photosensitizer upon broadband visible light (400-700 nm) activation. Ir4 also exhibited a very strong PDT effect toward MCF-7 breast cancer cells and its xenograft tumor model. Upon 450-nm light activation, Ir4 dramatically inhibited the xenograft tumor growth and exhibited negligible side effects upon PDT treatment.

SELECTION OF CITATIONS
SEARCH DETAIL