Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
J Infect Dis ; 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38531685

ABSTRACT

BACKGROUND: SARS-CoV-2 antigen-detection rapid diagnostic tests (Ag-RDTs) have become widely utilized but longitudinal characterization of their community-based performance remains incompletely understood. METHODS: This prospective longitudinal study at a large public university in Seattle, WA utilized remote enrollment, online surveys, and self-collected nasal swab specimens to evaluate Ag-RDT performance against real-time reverse transcription polymerase chain reaction (rRT-PCR) in the context of SARS-CoV-2 Omicron. Ag-RDT sensitivity and specificity within 1 day of rRT-PCR were evaluated by symptom status throughout the illness episode and Orf1b cycle threshold (Ct). RESULTS: From February to December 2022, 5,757 participants reported 17,572 Ag-RDT results and completed 12,674 rRT-PCR tests, of which 995 (7.9%) were rRT-PCR-positive. Overall sensitivity and specificity were 53.0% (95% CI: 49.6-56.4%) and 98.8% (98.5-99.0%), respectively. Sensitivity was comparatively higher for Ag-RDTs used 1 day after rRT-PCR (69.0%), 4 to 7 days post-symptom onset (70.1%), and Orf1b Ct ≤20 (82.7%). Serial Ag-RDT sensitivity increased with repeat testing ≥2 (68.5%) and ≥4 (75.8%) days after an initial Ag-RDT-negative result. CONCLUSION: Ag-RDT performance varied by clinical characteristics and temporal testing patterns. Our findings support recommendations for serial testing following an initial Ag-RDT-negative result, especially among recently symptomatic persons or those at high-risk for SARS-CoV-2 infection.

2.
JMIR Public Health Surveill ; 8(2): e28268, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35191852

ABSTRACT

BACKGROUND: Rapid diagnostic tests (RDTs) for influenza used by individuals at home could potentially expand access to testing and reduce the impact of influenza on health systems. Improving access to testing could lead to earlier diagnosis following symptom onset, allowing more rapid interventions for those who test positive, including behavioral changes to minimize spread. However, the accuracy of RDTs for influenza has not been determined in self-testing populations. OBJECTIVE: This study aims to assess the accuracy of an influenza RDT conducted at home by lay users with acute respiratory illness compared with that of a self-collected sample by the same individual mailed to a laboratory for reference testing. METHODS: We conducted a comparative accuracy study of an at-home influenza RDT (Ellume) in a convenience sample of individuals experiencing acute respiratory illness symptoms. Participants were enrolled in February and March 2020 from the Greater Seattle region in Washington, United States. Participants were mailed the influenza RDT and reference sample collection materials, which they completed and returned for quantitative reverse-transcription polymerase chain reaction influenza testing in a central laboratory. We explored the impact of age, influenza type, duration, and severity of symptoms on RDT accuracy and on cycle threshold for influenza virus and ribonuclease P, a marker of human DNA. RESULTS: A total of 605 participants completed all study steps and were included in our analysis, of whom 87 (14.4%) tested positive for influenza by quantitative reverse-transcription polymerase chain reaction (70/87, 80% for influenza A and 17/87, 20% for influenza B). The overall sensitivity and specificity of the RDT compared with the reference test were 61% (95% CI 50%-71%) and 95% (95% CI 93%-97%), respectively. Among individuals with symptom onset ≤72 hours, sensitivity was 63% (95% CI 48%-76%) and specificity was 94% (95% CI 91%-97%), whereas, for those with duration >72 hours, sensitivity and specificity were 58% (95% CI 41%-74%) and 96% (95% CI 93%-98%), respectively. Viral load on reference swabs was negatively correlated with symptom onset, and quantities of the endogenous marker gene ribonuclease P did not differ among reference standard positive and negative groups, age groups, or influenza subtypes. The RDT did not have higher sensitivity or specificity among those who reported more severe illnesses. CONCLUSIONS: The sensitivity and specificity of the self-test were comparable with those of influenza RDTs used in clinical settings. False-negative self-test results were more common when the test was used after 72 hours of symptom onset but were not related to inadequate swab collection or severity of illness. Therefore, the deployment of home tests may provide a valuable tool to support the management of influenza and other respiratory infections.


Subject(s)
Influenza, Human , Humans , Influenza, Human/diagnosis , Prospective Studies , Ribonuclease P , Self-Testing , Sensitivity and Specificity
3.
medRxiv ; 2022 Feb 06.
Article in English | MEDLINE | ID: mdl-35169816

ABSTRACT

Background: Co-circulating respiratory pathogens can interfere with or promote each other, leading to important effects on disease epidemiology. Estimating the magnitude of pathogen-pathogen interactions from clinical specimens is challenging because sampling from symptomatic individuals can create biased estimates. Methods: We conducted an observational, cross-sectional study using samples collected by the Seattle Flu Study between 11 November 2018 and 20 August 2021. Samples that tested positive via RT-qPCR for at least one of 17 potential respiratory pathogens were included in this study. Semi-quantitative cycle threshold (Ct) values were used to measure pathogen load. Differences in pathogen load between monoinfected and coinfected samples were assessed using linear regression adjusting for age, season, and recruitment channel. Results: 21,686 samples were positive for at least one potential pathogen. Most prevalent were rhinovirus (33·5%), Streptococcus pneumoniae (SPn, 29·0%), SARS-CoV-2 (13.8%) and influenza A/H1N1 (9·6%). 140 potential pathogen pairs were included for analysis, and 56 (40%) pairs yielded significant Ct differences (p < 0.01) between monoinfected and co-infected samples. We observed no virus-virus pairs showing evidence of significant facilitating interactions, and found significant viral load decrease among 37 of 108 (34%) assessed pairs. Samples positive with SPn and a virus were consistently associated with increased SPn load. Conclusions: Viral load data can be used to overcome sampling bias in studies of pathogen-pathogen interactions. When applied to respiratory pathogens, we found evidence of viral-SPn facilitation and several examples of viral-viral interference. Multipathogen surveillance is a cost-efficient data collection approach, with added clinical and epidemiological informational value over single-pathogen testing, but requires careful analysis to mitigate selection bias.

4.
Open Forum Infect Dis ; 8(11): ofab464, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34805425

ABSTRACT

BACKGROUND: We aimed to evaluate a testing program to facilitate control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission at a large university and measure spread in the university community using viral genome sequencing. METHODS: Our prospective longitudinal study used remote contactless enrollment, daily mobile symptom and exposure tracking, and self-swab sample collection. Individuals were tested if the participant was exposed to a known SARS-CoV-2-infected person, developed new symptoms, or reported high-risk behavior (such as attending an indoor gathering without masking or social distancing), if a member of a group experiencing an outbreak, or at enrollment. Study participants included students, staff, and faculty at an urban public university during the Autumn quarter of 2020. RESULTS: We enrolled 16 476 individuals, performed 29 783 SARS-CoV-2 tests, and detected 236 infections. Seventy-five percent of positive cases reported at least 1 of the following: symptoms (60.8%), exposure (34.7%), or high-risk behaviors (21.5%). Greek community affiliation was the strongest risk factor for testing positive, and molecular epidemiology results suggest that specific large gatherings were responsible for several outbreaks. CONCLUSIONS: A testing program focused on individuals with symptoms and unvaccinated persons who participate in large campus gatherings may be effective as part of a comprehensive university-wide mitigation strategy to control the spread of SARS-CoV-2.

5.
Clin Chem ; 68(1): 143-152, 2021 12 30.
Article in English | MEDLINE | ID: mdl-34286830

ABSTRACT

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse-transcription PCR (RT-qPCR). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce. To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral inactivation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/µL, 100% sensitivity, and 99.4% specificity when compared side by side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.


Subject(s)
COVID-19 Nucleic Acid Testing/methods , COVID-19 , COVID-19/diagnosis , Clinical Laboratory Techniques , Humans , RNA, Viral/isolation & purification , Real-Time Polymerase Chain Reaction , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Specimen Handling
6.
Influenza Other Respir Viruses ; 15(4): 469-477, 2021 07.
Article in English | MEDLINE | ID: mdl-33939275

ABSTRACT

BACKGROUND: Households represent important settings for transmission of influenza and other respiratory viruses. Current influenza diagnosis and treatment relies upon patient visits to healthcare facilities, which may lead to under-diagnosis and treatment delays. This study aimed to assess the feasibility of an at-home approach to influenza diagnosis and treatment via home testing, telehealth care, and rapid antiviral home delivery. METHODS: We conducted a pilot interventional study of remote influenza diagnosis and treatment in Seattle-area households with children during the 2019-2020 influenza season using pre-positioned nasal swabs and home influenza tests. Home monitoring for respiratory symptoms occurred weekly; if symptoms were reported within 48 hours of onset, participants collected mid-nasal swabs and used a rapid home-based influenza immunoassay. An additional home-collected swab was returned to a laboratory for confirmatory influenza RT-PCR testing. Baloxavir antiviral treatment was prescribed and delivered to symptomatic and age-eligible participants, following a telehealth encounter. RESULTS: 124 households comprising 481 individuals self-monitored for respiratory symptoms, with 58 home tests administered. 12 home tests were positive for influenza, of which eight were true positives confirmed by RT-PCR. The sensitivity and specificity of the home influenza test were 72.7% and 96.2%, respectively. There were eight home deliveries of baloxavir, with 7 (87.5%) occurring within 3 hours of prescription and all within 48 hours of symptom onset. CONCLUSIONS: We demonstrate the feasibility of self-testing combined with rapid home delivery of influenza antiviral treatment. This approach may be an important control strategy for influenza epidemics and pandemics.


Subject(s)
Influenza, Human , Antiviral Agents/therapeutic use , Child , Humans , Influenza, Human/diagnosis , Influenza, Human/drug therapy , Influenza, Human/epidemiology , Pandemics , Self-Testing , Sensitivity and Specificity
7.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: mdl-33563599

ABSTRACT

While influenza and other respiratory pathogens cause significant morbidity and mortality, the community-based burden of these infections remains incompletely understood. The development of novel methods to detect respiratory infections is essential for mitigating epidemics and developing pandemic-preparedness infrastructure. From October 2019 to March 2020, we conducted a home-based cross-sectional study in the greater Seattle, WA, area, utilizing electronic consent and data collection instruments. Participants received nasal swab collection kits via rapid delivery within 24 hours of self-reporting respiratory symptoms. Samples were returned to the laboratory and were screened for 26 respiratory pathogens and a housekeeping gene. Participant data were recorded via online survey at the time of sample collection and 1 week later. Of the 4,572 consented participants, 4,359 (95.3%) received a home swab kit and 3,648 (83.7%) returned a nasal specimen for respiratory pathogen screening. The 3,638 testable samples had a mean RNase P relative cycle threshold (Crt ) value of 19.0 (SD, 3.4), and 1,232 (33.9%) samples had positive results for one or more pathogens, including 645 (17.7%) influenza-positive specimens. Among the testable samples, the median time between shipment of the home swab kit and completion of laboratory testing was 8.0 days (interquartile range [IQR], 7.0 to 14.0). A single adverse event occurred and did not cause long-term effects or require medical attention. Home-based surveillance using online participant enrollment and specimen self-collection is a safe and feasible method for community-level monitoring of influenza and other respiratory pathogens, which can readily be adapted for use during pandemics.


Subject(s)
Influenza, Human , Respiratory Tract Infections , Cross-Sectional Studies , Humans , Influenza, Human/diagnosis , Influenza, Human/epidemiology , Pandemics , Respiratory Tract Infections/diagnosis , Respiratory Tract Infections/epidemiology , Specimen Handling
9.
bioRxiv ; 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-32511368

ABSTRACT

BACKGROUND: The urgent need for massively scaled clinical testing for SARS-CoV-2, along with global shortages of critical reagents and supplies, has necessitated development of streamlined laboratory testing protocols. Conventional nucleic acid testing for SARS-CoV-2 involves collection of a clinical specimen with a nasopharyngeal swab in transport medium, nucleic acid extraction, and quantitative reverse transcription PCR (RT-qPCR) (1). As testing has scaled across the world, the global supply chain has buckled, rendering testing reagents and materials scarce (2). To address shortages, we developed SwabExpress, an end-to-end protocol developed to employ mass produced anterior nares swabs and bypass the requirement for transport media and nucleic acid extraction. METHODS: We evaluated anterior nares swabs, transported dry and eluted in low-TE buffer as a direct-to-RT-qPCR alternative to extraction-dependent viral transport media. We validated our protocol of using heat treatment for viral activation and added a proteinase K digestion step to reduce amplification interference. We tested this protocol across archived and prospectively collected swab specimens to fine-tune test performance. RESULTS: After optimization, SwabExpress has a low limit of detection at 2-4 molecules/uL, 100% sensitivity, and 99.4% specificity when compared side-by-side with a traditional RT-qPCR protocol employing extraction. On real-world specimens, SwabExpress outperforms an automated extraction system while simultaneously reducing cost and hands-on time. CONCLUSION: SwabExpress is a simplified workflow that facilitates scaled testing for COVID-19 without sacrificing test performance. It may serve as a template for the simplification of PCR-based clinical laboratory tests, particularly in times of critical shortages during pandemics.

10.
Clin Infect Dis ; 73(11): e4411-e4418, 2021 12 06.
Article in English | MEDLINE | ID: mdl-33197930

ABSTRACT

BACKGROUND: Noninfluenza respiratory viruses are responsible for a substantial burden of disease in the United States. Household transmission is thought to contribute significantly to subsequent transmission through the broader community. In the context of the coronavirus disease 2019 (COVID-19) pandemic, contactless surveillance methods are of particular importance. METHODS: From November 2019 to April 2020, 303 households in the Seattle area were remotely monitored in a prospective longitudinal study for symptoms of respiratory viral illness. Enrolled participants reported weekly symptoms and submitted respiratory samples by mail in the event of an acute respiratory illness (ARI). Specimens were tested for 14 viruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), using reverse-transcription polymerase chain reaction. Participants completed all study procedures at home without physical contact with research staff. RESULTS: In total, 1171 unique participants in 303 households were monitored for ARI. Of participating households, 128 (42%) included a child aged <5 years and 202 (67%) included a child aged 5-12 years. Of the 678 swabs collected during the surveillance period, 237 (35%) tested positive for 1 or more noninfluenza respiratory viruses. Rhinovirus, common human coronaviruses, and respiratory syncytial virus were the most common. Four cases of SARS-CoV-2 were detected in 3 households. CONCLUSIONS: This study highlights the circulation of respiratory viruses within households during the winter months during the emergence of the SARS-CoV-2 pandemic. Contactless methods of recruitment, enrollment, and sample collection were utilized throughout this study and demonstrate the feasibility of home-based, remote monitoring for respiratory infections.


Subject(s)
COVID-19 , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Viruses , Child , Humans , Longitudinal Studies , Prospective Studies , Respiratory Tract Infections/epidemiology , SARS-CoV-2
11.
medRxiv ; 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33330895

ABSTRACT

Unsupervised upper respiratory specimen collection is a key factor in the ability to massively scale SARS-CoV-2 testing. But there is concern that unsupervised specimen collection may produce inferior samples. Across two studies that included unsupervised at-home mid-turbinate specimen collection, ~1% of participants used the wrong end of the swab. We found that molecular detection of respiratory pathogens and a human biomarker were comparable between specimens collected from the handle of the swab and those collected correctly. Older participants were more likely to use the swab backwards. Our results suggest that errors made during home-collection of nasal specimens do not preclude molecular detection of pathogens and specialized swabs may be an unnecessary luxury during a pandemic.

SELECTION OF CITATIONS
SEARCH DETAIL
...