Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Appl Microbiol Biotechnol ; 108(1): 52, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38183478

ABSTRACT

For a better understanding of the distribution of depth-dependent electrochemically active bacteria at in the anode zone, a customized system in a microbial fuel cell (MFC) packed with granular activated carbon (GAC) was developed and subsequently optimized via electrochemical tests. The constructed MFC system was sequentially operated using two types of matrice solutions: artificially controlled compositions (i.e., artificial wastewater, AW) and solutions obtained directly from actual sewage-treating municipal plants (i.e., municipal wastewater, MW). Notably, significant difference(s) of system efficiencies between AW or MW matrices were observed via performance tests, in that the electricity production capacity under MW matrices is < 25% that of the AW matrices. Interestingly, species of Escherichia coli (E. coli) sampled from the GAC bed (P1: deeper region in GAC bed, P2: shallow region of GAC near electrolytes) exhibited an average relative abundance of 75 to 90% in AW and a relative abundance of approximately 10% in MW, while a lower relative abundance of E. coli was found in both the AW and MW anolyte samples (L). Moreover, similar bacterial communities were identified in samples P1 and P2 for both the AW and MW solutions, indicating a comparable distribution of bacterial communities over the anode area. These results provide new insights into E. coli contribution in power production for the GAC-packed MFC systems (i.e., despite the low contents of Geobacter (> 8%) and Shewanella (> 1%)) for future applications in sustainable energy research. KEY POINTS: • A microbial community analysis for depth-dependence in biofilm was developed. • The system was operated with two matrices; electrochemical performance was assessed. • E. coli spp. was distinctly found in anode zone layers composed of activated carbon.


Subject(s)
Bioelectric Energy Sources , Prevalence , Charcoal , Escherichia coli/genetics , Wastewater , Biofilms
2.
Water Res ; 244: 120482, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37678038

ABSTRACT

An integrated ultraviolet C light-emitting diode (UV-C LED) water disinfection system activated by microbial fuel cells (MFCs) was developed, and optimized via electric circuit and device voltage profiling. The intensity of the renewable energy operated, self-powered UV-C LED for E. coli inactivation was calculated by bio-dosimetry to be 2.4  × 10-2 µW cm-2 using fluence-based rate constant (k) of ∼1.03 (±0.11) cm2/mJ to obtain the reduction equivalent fluence kinetics value. Finally, the first-order rate constant for E. coli inactivation during the tailored hybrid disinfection system was found to be 0.53 (±0.1) cm2/mJ by multiplying intensity with 1.09 (±0.1) × 10-5 s-1 derived from the linear regression of E. coli inactivation as a function of time. Furthermore, selected model microbial consisting of two bacteria (Salmonella sp. and Listeria sp.) and three viruses (MS2 bacteriophage, influenza A virus, and murine norovirus-1) were treated with UV-C LED irradiation under controlled experimental conditions to validate the disinfection efficiency of the system. Consequently, the required to achieve significant removal (i.e., >3-log; 99.9%) UV fluence and dose time were calculated to be 4-7 cm2/mJ and 54-76 h and 33-53 cm2/mJ and 400-622 h for model bacterial and viral, respectively. This study expands the applicability of microbial electrochemical system (MES) for microbial disinfection and could be utilized in future MFCs implementation studies for predicting and measuring the kinetics of microbial elimination using a tailored hybrid water treatment system.


Subject(s)
Bioelectric Energy Sources , Animals , Mice , Disinfection , Escherichia coli , Electricity , Kinetics
3.
Sci Total Environ ; 902: 166414, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37604374

ABSTRACT

In this study, we investigated the biogenic mineral transformation of poorly crystalline ferrihydrite in the presence of an acclimated microbial consortium after confirming successful soil microbial fuel cell optimization. The acclimated microbial consortia in the electrodes distinctly transformed amorphous ferrihydrite into crystallized hematite (cathode) and goethite (anode) under ambient culture conditions (30 °C). Serial analysis, including transmission/scanning electron microscopy and X-ray/selected area electron diffraction, confirmed that the biogenically synthesized nanostructures were iron nanospheres (~100 nm) for hematite and nanostars (~300 nm) for goethite. Fe(II) ion production with acetate oxidation via anaerobic respiration was much higher in the anode electrode sample (3.2- to 17.8-fold) than for the cathode electrode or soil samples. Regarding the culturable bacteria from the acclimated microbial consortium, the microbial isolates were more abundant and diverse at the anode. These results provide new insights into the biogeochemistry of iron minerals and microbial fuel cells in a soil environment, along with physiological characters of microbes (i.e., iron-reducing bacteria), for in situ applications in sustainable energy research.


Subject(s)
Bioelectric Energy Sources , Microbial Consortia , Soil , Ferric Compounds/chemistry , Minerals/chemistry , Iron/chemistry , Oxidation-Reduction , Bacteria , Electrodes
4.
Am J Transl Res ; 15(3): 1831-1841, 2023.
Article in English | MEDLINE | ID: mdl-37056800

ABSTRACT

OBJECTIVES: EGT022, an RGD-containing recombinant disintegrin from human ADAM metallopeptidase domain 15 (ADAM15), has been reported to stimulate vascular maturation of retinal blood vessels with promotion of pericyte coverage through binding to integrin αIIbß3. Previous studies have reported that angiogenesis can be inhibited by several RGD motif-containing disintegrins; however, the effect of EGT022 on Vascular endothelial growth factor (VEGF)-induced angiogenesis has not yet been determined. This study was conducted in order to evaluate the anti-angiogenic function of EGT022 in VEGF-induced endothelial cells. METHODS: A proliferation and migration assay was performed using human umbilical vein endothelial cells (HUVEC) cells stimulated with VEGF to determine whether the angiogenic process was suppressed by EGT022. An in vitro trans-well assay and Mile's permeability assay were performed to determine the effect of EGT022 on permeability. Western blot was performed in order to further determine whether EGT022 can inhibit phosphorylation of VEGF receptor-2 (VEGFR2) and Phospholipase C gamma1 (PLC-γ1). An integrin binding assay and luciferase assay were performed for identification of the integrin target of EGT022. RESULTS: Angiogenesis including proliferation, migration, tube formation, and permeability was significantly inhibited by EGT022 in HUVEC cells. Our findings also demonstrated that EGT022 binds directly to integrin αvß3, induces dephosphorylation of integrin ß3, and inhibits phosphorylation of VEGFR2. In addition, phosphorylation of PLC-γ1 and activation of Nuclear Factor of Activated T-cell (NFAT), a downstream pathway of VEGF, are inhibited by EGT022 in HUVEC cells. CONCLUSION: These results clearly demonstrate the anti-angiogenic role played by EGT022 as a potent antagonist of integrin ß3 in endothelial cells.

5.
J Environ Manage ; 335: 117493, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36822047

ABSTRACT

Despite the identification of numerous bioplastic-degrading bacteria, the inconsistent rate of bioplastic degradation under differing cultivation conditions limits the intercomparison of results on biodegradation kinetics. In this study, we isolated a poly (Ɛ-caprolactone) (PCL)-degrading bacterium from a plastic-contaminated landfill and determined the principle-based biodegradation kinetics in a confined model system of varying cultivation conditions. Bacterial degradation of PCL films synthesized by different polymer number average molecular weights (Mn) and concentrations (% w/v) was investigated using both solid and liquid media at various temperatures. As a result, the most active gram-negative bacterial strain at ambient temperature (28 °C), designated CY2-9, was identified as Aquabacterium sp. Based on 16 S rRNA gene analysis. A clear zone around the bacterial colony was apparently exhibited during solid cultivation, and the diameter sizes increased with incubation time. During biodegradation processes in the PCL film, the thermal stability declined (determined by TGA; weight changes at critical temperature), whereas the crystalline proportion increased (determined by DSC; phase transition with temperature increment), implying preferential degradation of the amorphous region in the polymer structure. The surface morphologies (determined by SEM; electron optical system) were gradually hydrolyzed, creating destruction patterns as well as alterations in functional groups on film surfaces (determined by FT-IR; infrared spectrum of absorption or emission). In the kinetic study based on the weight loss of the PCL film (4.5 × 104 Da, 1% w/v), ∼1.5 (>±0.1) × 10-1 day-1 was obtained from linear regression for both solid and liquid media cultivation at 28 °C. The biodegradation efficiencies increased proportionally by a factor of 2.6-7.9, depending on the lower polymer number average molecular weight and lower concentration. Overall, our results are useful for measuring and/or predicting the degradation rates of PCL films by microorganisms in natural environments.


Subject(s)
Plastics , Polyesters , Polyesters/metabolism , Spectroscopy, Fourier Transform Infrared , Kinetics , Polymers , Bacteria/metabolism
6.
Nanomaterials (Basel) ; 12(8)2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35458023

ABSTRACT

Microbial electrolysis cells (MECs) have attracted significant interest as sustainable green hydrogen production devices because they utilize the environmentally friendly biocatalytic oxidation of organic wastes and electrochemical proton reduction with the support of relatively lower external power compared to that used by water electrolysis. However, the commercialization of MEC technology has stagnated owing to several critical technological challenges. Recently, many attempts have been made to utilize nanomaterials in MECs owing to the unique physicochemical properties of nanomaterials originating from their extremely small size (at least <100 nm in one dimension). The extraordinary properties of nanomaterials have provided great clues to overcome the technological hurdles in MECs. Nanomaterials are believed to play a crucial role in the commercialization of MECs. Thus, understanding the technological challenges of MECs, the characteristics of nanomaterials, and the employment of nanomaterials in MECs could be helpful in realizing commercial MEC technologies. Herein, the critical challenges that need to be addressed for MECs are highlighted, and then previous studies that used nanomaterials to overcome the technological difficulties of MECs are reviewed.

7.
Am J Cancer Res ; 11(3): 746-759, 2021.
Article in English | MEDLINE | ID: mdl-33791151

ABSTRACT

Worldwide, colorectal cancer (CRC) is one of the most common cancers and is a leading cause of cancer-related deaths. Accumulating evidence suggests that probiotics suppress the development of various cancers including CRC. Recently, we reported a Lactobacillus rhamnosus (LR)-derived 8 kDa protein (p8) that displayed anti-cancer properties in CRC cells. However, the precise anti-cancer mechanism of p8 and its target genes has not been fully examined. In the present study, we reveal that p8 leads to apoptotic cells and cleaved PARP1 expression in a mouse xenograft model of CRC. Additionally, we identified Ring finger protein 152 (RNF152) as a putative target of p8 using RNA-sequencing. Furthermore, the expression levels of RNF152 were increased following in vivo and in vitro treatment with p8. We also found that p8 leads to the accumulation of cleaved PARP1 in CRC cells. These results suggest that p8 induces apoptosis via regulation of RNF152, thus inhibiting the development of CRC.

8.
Bioresour Technol ; 320(Pt A): 124254, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33120066

ABSTRACT

The aim of this work is to study for concurrent harvesting bioelectricity and struvite mineral from mineral rich wastewater containing with nitrogen (N) and phosphorous (P) contents using MFCs and a chemical precipitation system. Whole reaction was constructed to sequentially run hybrid reactor (consisting of MFCs and struvite precipitation), gravitational sedimentation, nitrogen purging and MFCs. The MFCs generated around 6.439 ± 0.481 mA and 2.084 ± 0.310 mW as Imax and Pmax, respectively under 2g/l of COD. More than 70% of C source, and around 95% of P and N sources have been removed. Struvite mineral was precipitated in the hybrid reactor after the injection of Mg2+ and collected in sedimentation tank. Economic feasibility and beneficial concerns were carefully investigated, and it is proposed for applications in the "decentralised treatment process" of agriculture and livestock wastewater in order to realise circular and strong economy in agriculture by creating virtuous cycles.


Subject(s)
Bioelectric Energy Sources , Water Purification , Minerals , Struvite , Waste Disposal, Fluid , Wastewater
9.
Article in English | MEDLINE | ID: mdl-32605225

ABSTRACT

Background: Recent research indicates that shift work is associated with neurocognitive function. However, studies that examine the association between shift work and neurocognitive function in firefighters have not yet been performed. We examined the effect of shift work on neurocognitive function in firefighters by measuring and comparing neurocognitive function before and after night shift. Methods: 352 firefighters from eight fire stations in South Korea were included in this study. We performed neurocognitive function test using central nervous system vital signs (CNSVS) during daytime work and on the next day after night work. We performed paired t-tests to assess differences between neurocognitive function before and after night work. We also compared neurocognitive function in insomnia and depression. We used a general linear model to analyze the associations between shiftwork schedule and the changes in neurocognitive function. Results: The neurocognitive function significantly decreased in six domains (composite memory, verbal memory, visual memory, complex attention, psychomotor speed, and motor speed) as did the neurocognitive index on the next day after night work compared with during day work. These decreased domains were the same following night work regardless of the type of shift work. Conclusion: Night work in firefighters may cause neurocognitive decline.


Subject(s)
Cognition Disorders , Firefighters , Shift Work Schedule , Adult , Controlled Before-After Studies , Depression , Female , Humans , Male , Middle Aged , Prospective Studies , Republic of Korea/epidemiology , Shift Work Schedule/adverse effects , Sleep , Sleep Initiation and Maintenance Disorders , Work Schedule Tolerance , Young Adult
10.
Trends Biotechnol ; 38(6): 667-678, 2020 06.
Article in English | MEDLINE | ID: mdl-31980302

ABSTRACT

Microbial fuel cell (MFC) systems have been developed for potential use as power sources, along with several other applications, with bacteria as the prime factor enabling electrocatalytic activity. Limited voltage and current production from unit cells limit their practical applicability, so stacking multiple MFCs has been proposed as a way to increase power production. Special attention is paid to voltage reversal (VR), a common occurrence in stacked MFCs, and to identifying the mechanisms underlying this phenomenon. We also proposed realistic perspectives on stacked MFCs in an effort to control and suppress VR by balancing the kinetics in the system, such as using enriched electroactive microorganisms or altering the circuitry mode.


Subject(s)
Bacteria/chemistry , Bioelectric Energy Sources , Electric Power Supplies , Electricity , Electrodes , Humans , Kinetics
11.
Mol Cells ; 42(11): 755-762, 2019 Nov 30.
Article in English | MEDLINE | ID: mdl-31707776

ABSTRACT

Despite decades of research into colorectal cancer (CRC), there is an ongoing need for treatments that are more effective and safer than those currently available. Lactic acid bacteria (LAB) show beneficial effects in the context of several diseases, including CRC, and are generally regarded as safe. Here, we isolated a Lactobacillus rhamnosus (LR)-derived therapeutic protein, p8, which suppressed CRC proliferation. We found that p8 translocated specifically to the cytosol of DLD-1 cells. Moreover, p8 down-regulated expression of Cyclin B1 and Cdk1, both of which are required for cell cycle progression. We confirmed that p8 exerted strong anti-proliferative activity in a mouse CRC xenograft model. Intraperitoneal injection of recombinant p8 (r-p8) led to a significant reduction (up to 59%) in tumor mass when compared with controls. In recent years, bacterial drug delivery systems (DDSs) have proven to be effective therapeutic agents for acute colitis. Therefore, we aimed to use such systems, particularly LAB, to generate the valuable therapeutic proteins to treat CRC. To this end, we developed a gene expression cassette capable of inducing secretion of large amounts of p8 protein from Pediococcus pentosaceus SL4 (PP). We then confirmed that this protein (PP-p8) exerted anti-proliferative activity in a mouse CRC xenograft model. Oral administration of PP-p8 DDS led to a marked reduction in tumor mass (up to 64%) compared with controls. The PP-p8 DDS using LAB described herein has advantages over other therapeutics; these advantages include improved safety (the protein is a probiotic), cost-free purification, and specific targeting of CRC cells.


Subject(s)
Bacterial Proteins/genetics , Colorectal Neoplasms/drug therapy , Drug Delivery Systems/methods , Pediococcus pentosaceus/metabolism , Recombinant Proteins/administration & dosage , Animals , Bacterial Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Proliferation/genetics , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , HT29 Cells , Humans , Injections, Intraperitoneal , Lacticaseibacillus rhamnosus/genetics , Lacticaseibacillus rhamnosus/metabolism , Mice, Inbred BALB C , Mice, Nude , Recombinant Proteins/metabolism , Xenograft Model Antitumor Assays/methods
12.
Genes (Basel) ; 10(8)2019 08 19.
Article in English | MEDLINE | ID: mdl-31430963

ABSTRACT

Recently, we reported a novel therapeutic probiotic-derived protein, p8, which has anti-colorectal cancer (anti-CRC) properties. In vitro experiments using a CRC cell line (DLD-1), anti-proliferation activity (about 20%) did not improve after increasing the dose of recombinant-p8 (r-p8) to >10 µM. Here, we show that this was due to the low penetrative efficiency of r-p8 exogenous treatment. Furthermore, we found that r-p8 entered the cytosol through endocytosis, which might be a reason for the low penetration efficiency. Therefore, to improve the therapeutic efficacy of p8, we tried to improve delivery to CRC cells. This resulted in endogenous expression of p8 and increased the anti-proliferative effects by up to 2-fold compared with the exogenous treatment (40 µM). Anti-migration activity also increased markedly. Furthermore, we found that the anti-proliferation activity of p8 was mediated by inhibition of the p53-p21-Cyclin B1/Cdk1 signal pathway, resulting in growth arrest at the G2 phase of the cell cycle. Taken together, these results suggest that p8 is toxic to cancer cells, shows stable expression within cells, and shows strong cancer suppressive activity by inducing cell cycle arrest. Therefore, p8 is a strong candidate for gene therapy if it can be loaded onto cancer-specific viruses.


Subject(s)
Antineoplastic Agents/pharmacology , Bacterial Proteins/pharmacology , Colorectal Neoplasms/metabolism , Lacticaseibacillus rhamnosus/metabolism , Probiotics/metabolism , CDC2 Protein Kinase/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclin B1/metabolism , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Endocytosis , G2 Phase , Humans , Lacticaseibacillus rhamnosus/chemistry , Probiotics/chemistry , Signal Transduction , Tumor Suppressor Protein p53/metabolism
13.
Bioresour Technol ; 262: 338-341, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29731366

ABSTRACT

Voltage reversal (VR) in series connection of multiple membrane electrode assembly installed microbial fuel cells (mMEA-MFC) is eliminated by manipulating the resistor control. Discharge test results collected from two mMEA-MFCs initially operated (designated as P1 and P2) confirm that the performance of P2 exceeds that of P1. Thus, driving P1 and P2 as serially stacked MFCs generate the VR in P1. Controlling the inserted resistor adjust the current production of P2 to maintain balance with P1, and the VR in P1 is eliminated in the operation of stacking mode. Thus, manipulating the internal resistance provide an applicable approach to suppress VR in the stacking of mMEA-MFCs system.


Subject(s)
Bioelectric Energy Sources , Electricity , Electrodes
14.
Ann Occup Environ Med ; 30: 21, 2018.
Article in English | MEDLINE | ID: mdl-29644078

ABSTRACT

BACKGROUND: The Korea Radiation Effect & Epidemiology Cohort - The resident cohort (KREEC-R) study concluded that there is no epidemiological or causal evidence supporting any increase in cancer risks resulting from radiation from Korean nuclear power plants (NPPs). But the risks of thyroid cancer in women were significantly higher in residents living near NPPs than control. Debate about the cause of the pattern of thyroid cancer incidence in women is ongoing and some researchers argue that detection bias influenced the result of KREEC-R study. Therefore there was a need to investigate whether residents living near NPPs who were assessed in the KREEC-R were actually tested more often for thyroid cancer. We evaluated the possibility of detection bias in the finding of the KREEC-R study based on materials available at this time. METHODS: Using the KREEC-R raw data, we calculated age standardized rates (ASRs) of female thyroid cancer and re-analyzed the results of survey on the use of medical services. We also marked the administrative districts of residents who received the Radiation Health Research Institute (RHRI) health examinations and those in which thyroid cancer case occurred as per the Chonnam National University Research Institute of Medical Sciences (RIMS) final report on maps where the locations of NPPs and 5 km-radii around them were also indicated. And we compared the incidence rates of Radiation-induced cancer measured between the first period when RHRI health examinations were not yet implemented, and the second period when the RHRI health examinations were implemented. RESULTS: The ASR for the far-distance group, which comprised residents living in areas outside the 30 km radius of the NPPs, increased rapidly after 2000; however, that of the exposed group, which comprised residents living within a 5 km radius of the NPPs, started to increase rapidly even before 1995. The frequencies of the use of medical services were significantly higher in the intermediate proximate group, which comprised residents living within a 5-30 km radius of the NPPs, than in the exposed group in women. In case of female thyroid cancer, the second period ASR was higher than the first period ASR, but in case of female liver cancer and female stomach cancer no significant difference were observed between the periods. On map, many administrative districts of residents who received RHRI health examinations and most administrative districts in which thyroid cancer case occurred on RIMS final report were outside 5 km-radii around NPPs. CONCLUSIONS: We could not find any evidence supporting the assertion that detection bias influenced the increased risks of female thyroid cancer observed in the exposed group of the KREEC-R study, as opposed to the control group.

15.
Article in English | MEDLINE | ID: mdl-29522487

ABSTRACT

Background: A 20-year follow-up study on cancer incidence among people living near nuclear power plants in South Korea ended in 2011 with a finding of significantly, but inconsistently, elevated thyroid cancer risk for females. Reanalysis of the original study was carried out to examine the dose-response relationship further, and to investigate any evidence of detection bias. Methods: In addition to replicating the original Cox proportional hazards models, nested case-control analysis was carried out for all subjects and for four different birth cohorts to examine the effects of excluding participants with pre-existing cancer history at enrollment. The potential for detection bias was investigated using the records of medical utilization and voluntary health checks of comparison groups. Results: The overall risk profile of the total sample was similar to that of the original study. However, in the stratified analysis of four birth cohorts, the cancer risk among people living near nuclear power plants became higher in younger birth cohorts. This was especially true for thyroid cancers of females (hazard ratio (HR) 3.38) and males (HR 1.74), female breast cancers (HR 2.24), and radiation-related cancers (HR 1.59 for males, HR 1.77 for females), but not for radiation-insensitive cancers (HR 0.59 for males, HR 0.98 for females). Based on medical records and health check reports, we found no differences between comparison groups that could have led to detection bias. Conclusions: The overall results suggest elevated risk of radiation-related cancers among residents living near nuclear power plants, controlling for the selective survival effect. This is further supported by the lack of evidence of detection bias and by records of environmental exposure from radiation waste discharge.


Subject(s)
Environmental Exposure/statistics & numerical data , Neoplasms, Radiation-Induced/epidemiology , Nuclear Power Plants/statistics & numerical data , Age Factors , Breast Neoplasms/epidemiology , Case-Control Studies , Female , Follow-Up Studies , Humans , Incidence , Male , Proportional Hazards Models , Republic of Korea/epidemiology , Risk , Sex Factors , Thyroid Neoplasms/epidemiology
16.
Bioresour Technol ; 254: 357-361, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29398289

ABSTRACT

In this study, the electrochemical properties of a Shewanella oneidensis MR-1 biofilm were investigated using a mini-microbial electrochemical system. The performance of the biofilm was shown, using discharge test and cyclic voltammetry investigations, to improve over time. Differential pulse voltammograms were also acquired to determine the type of extracellular electron transfer that took place and to characterize the structure of the microbial biofilm formed on the electrode of the electrochemical system. These results indicated that extracellular electron transfer via a flavin-like mediator chemical predominated as the biofilm grew. The results, combined with a comparison of the measured current density with the calculated value of a seamless single-layered biofilm, also suggested that S. oneidensis MR-1 formed a multi-layered biofilm on the electrode.


Subject(s)
Bioelectric Energy Sources , Biofilms , Shewanella , Electrodes , Electron Transport
17.
Protein J ; 37(1): 82-92, 2018 02.
Article in English | MEDLINE | ID: mdl-29256161

ABSTRACT

A polyclonal antibody specific to an egg protein of Suminoe oyster Crassostrea ariakensis was previously developed in our laboratory to assess the reproductive life cycle of the oyster. The present study was undertaken to investigate vitellin of C. ariakensis (CAVt). Vitellin is an essential component of egg proteins in marine invertebrates as it provides energy and nutrients to the embryo and larvae. CAVt was purified from eggs of the oyster using ammonium sulfate precipitation followed by affinity chromatography with Concanavalin A-agarose. Native polyacrylamide gel electrophoresis (PAGE) and sodium dodecyl sulfate PAGE showed that CAVt is a high molecular weight [532 kiloDaltons (kDa)] protein, with multiple subunits. Similar to other vitellin proteins, it is a phospholipoglycoprotein composed of phospholipids (12.06%), carbohydrates (mannose, 10.08% or glucose, 9.84%), and alkali-labile phosphates (4.16%). Affinity chromatography, enzyme-linked immunosorbent aasay (ELISA) and western blot analysis revealed that CAVt is only present in the ovary, and two subunits of CAVt (72 and 35 kDa) are believed to be incorporated from the hemolymph into the oocyte. The antibody specific to CAVt (anti-CAVt), raised in rabbit, strongly cross reacted with the egg proteins of oyster species and scallops, suggesting that the antigenic epitopes are highly conserved among species. Our results suggest that the anti-CAVt antibody can be used to develop a tool similar to ELISA or western blotting for investigation of the effect of microorganisms on reproduction as well as the effect of chemicals on the endocrine system in C. ariakensis.


Subject(s)
Antibodies , Aquatic Organisms , Ostreidae , Ovum , Vitellins , Animals , Antibodies/chemistry , Antibodies/immunology , Aquatic Organisms/chemistry , Aquatic Organisms/immunology , Cross Reactions , Ostreidae/chemistry , Ostreidae/immunology , Ovum/chemistry , Ovum/immunology , Rabbits , Vitellins/chemistry , Vitellins/immunology , Vitellins/isolation & purification
18.
Bioresour Technol ; 245(Pt A): 1286-1289, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28899676

ABSTRACT

In order to assess the effects of biofilm capacitance on self-recovering voltage reversals, the restored current is determined and compared with the measured biofilm capacitance by analyzing the results of electrochemical impedance spectroscopy. This comparison demonstrates that self-recovering voltage reversals are caused by temporary damage to, and the recovery of, biofilm capacitance which arises due to the ability of redox enzymes in the electron transfer system to temporarily store electrons. Thus, the development of procedures for voltage reversal control and for the maintenance of serially connected microbial fuel cells (MFCs) should take into account such temporary voltage reversal phenomenon. This discovery and characterization of self-recovering voltage reversals is expected to be practically useful to enhance the reliability of MFCs to be scaled up and implemented in practical systems.


Subject(s)
Bioelectric Energy Sources , Biofilms , Electric Capacitance , Electrodes , Reproducibility of Results
19.
Mol Carcinog ; 56(6): 1620-1629, 2017 06.
Article in English | MEDLINE | ID: mdl-28112443

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers and has a high rate of morbidity and mortality worldwide. Very-low-density-lipoprotein receptor (VLDLR), a member of the low-density-lipoprotein receptor (LDLR) superfamily, is a multifunctional receptor that regulates cellular signaling by binding numerous ligands. Several studies reported the altered expression of VLDLR and suggested that VLDLR may play a critical role in tumor development by affecting cell proliferation and metastasis. However, the function of VLDLR and regulation of its expression by miRNAs have not been investigated in CRC. In the present study, we investigated the expression of VLDLR in CRC patients and found it to be significantly decreased in tumors in comparison with paired adjacent non-tumor tissues. Moreover, VLDLR over-expression inhibited the proliferation and migration of CRC cells. We also found that VLDLR expression was negatively regulated by miR-200c in CRC cells and that their expression levels were inversely correlated in CRC patients. These data suggest that VLDLR down-regulation mediated by the increased expression of miR-200c may be involved in the development of CRC.


Subject(s)
Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Receptors, LDL/genetics , Cell Line, Tumor , Cell Movement , Cell Proliferation , Colon/metabolism , Colon/pathology , Colorectal Neoplasms/pathology , Down-Regulation , Humans , Rectum/metabolism , Rectum/pathology
20.
ChemSusChem ; 10(3): 612-617, 2017 02 08.
Article in English | MEDLINE | ID: mdl-27878978

ABSTRACT

The power overshoot generated by electron depletion in microbial fuel cells (MFCs) was characterized in this study. Various causes of power overshoot, identified in previous studies, are discussed in terms of their plausible contributions to electron depletion. We found that power overshoot occurred if the anodic overpotential generated by electron depletion exceeded the cathodic overpotential. The introduction of assistance current from anode connections, which ameliorated the electron depletion in the MFCs, immediately eliminated the power overshoot. As a result, if the electron production at the anode exceeded electron reduction at the cathode, a power overshoot was not generated. The results revealed that introducing assistance current supplied from an additional anode to the limited anode eliminated power overshoot. The power overshoot is not generated by kinetic limitation at the cathode; it is only generated by the kinetic limitation at the anode. The mechanism underlying power overshoot should be considered in the design of MFCs to improve reliability, particularly in scaled-up plant applications. The proposed technique is more practical than previously proposed methods.


Subject(s)
Bioelectric Energy Sources , Electric Conductivity , Electrodes , Electron Transport , Equipment Design
SELECTION OF CITATIONS
SEARCH DETAIL
...