Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(1)2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36678707

ABSTRACT

Dry eye disease (DED) is characterized by impaired tear dynamics, leading to complex pathophysiological conditions. (PEG)-BHD1028, a peptide agonist to AdipoRs, was evaluated as a potential therapeutic agent for DED based on the reported physiological function of adiponectin, including anti-inflammation and epithelial protection. Therapeutic effects of (PEG)-BHD1028 were evaluated in experimentally induced EDE with 0.001%, 0.01%, and 0.1% (PEG)-BHD1028 in mice and 0.1%, 0.2%, and 0.4% in rabbits for 10 days. In the rabbit study, 0.05% cyclosporine was also tested as a comparator. The results from the mouse study revealed significant improvement in tear volumes, tear breakup time (TBUT), inflammation, and corneal severity score (CSS) within 10 days at all (PEG)-BHD1028 concentrations. In the rabbit study, the tear volume and TBUT significantly increased in (PEG)-BHD1028 groups compared with vehicle and 0.05% cyclosporine groups. The CSS, apoptosis rate, and corneal thickness of all (PEG)-BHD1028 and 0.05% cyclosporine groups were significantly improved relative to the vehicle group. The immune cell counts of 0.2% and 0.4% (PEG)-BHD1028 treated groups were significantly lower than those of the vehicle group. These results represent the potential of (PEG)-BHD1028 as an effective therapeutic agent for DED.

2.
Int J Mol Sci ; 22(2)2021 Jan 17.
Article in English | MEDLINE | ID: mdl-33477324

ABSTRACT

Adiponectin plays multiple critical roles in modulating various physiological processes by binding to its receptors. The functions of PEG-BHD1028, a potent novel peptide agonist to AdipoRs, was evaluated using in vitro and in vivo models based on the reported action spectrum of adiponectin. To confirm the design concept of PEG-BHD1028, the binding sites and their affinities were analyzed using the SPR (Surface Plasmon Resonance) assay. The results revealed that PEG-BHD1028 was bound to two heterogeneous binding sites of AdipoR1 and AdipoR2 with a relatively high affinity. In C2C12 cells, PEG-BHD1028 significantly activated AMPK and subsequent pathways and enhanced fatty acid ß-oxidation and mitochondrial biogenesis. Furthermore, it also facilitated glucose uptake by lowering insulin resistance in insulin-resistant C2C12 cells. PEG-BHD1028 significantly reduced the fasting plasma glucose level in db/db mice following a single s.c. injection of 50, 100, and 200 µg/Kg and glucose tolerance at a dose of 50 µg/Kg with significantly decreased insulin production. The animals received 5, 25, and 50 µg/Kg of PEG-BHD1028 for 21 days significantly lost their weight after 18 days in a range of 5-7%. These results imply the development of PEG-BHD1028 as a potential adiponectin replacement therapeutic agent.


Subject(s)
Peptides/pharmacology , Receptors, Adiponectin/metabolism , Adiponectin/metabolism , Animals , Binding Sites , Cell Culture Techniques , Fatty Acids/metabolism , Insulin/metabolism , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , Mitochondria/metabolism , Myoblasts/metabolism , Organelle Biogenesis , Oxidation-Reduction , Peptides/chemistry , Polyethylene Glycols/pharmacology , Receptors, Adiponectin/antagonists & inhibitors , Signal Transduction
3.
PLoS One ; 13(6): e0199256, 2018.
Article in English | MEDLINE | ID: mdl-29912982

ABSTRACT

Activation of adiponectin receptors (AdipoRs) by its natural ligand, adiponectin has been known to be involved in modulating critical metabolic processes such as glucose metabolism and fatty acid oxidation as demonstrated by a number of in vitro and in vivo studies over last two decades. These findings suggest that AdipoRs' agonists could be developed into a potential therapeutic agent for metabolic diseases, such as diabetes mellitus, especially for type II diabetes, a long-term metabolic disorder characterized by high blood sugar, insulin resistance, and relative lack of insulin. Because of limitations in production of biologically active adiponectin, adiponectin-mimetic AdipoRs' agonists have been suggested as alternative ways to expand the opportunity to develop anti-diabetic agents. Based on crystal structure of AdipoR1, we designed AdipoR1's peptide agonists using protein-peptide docking simulation and screened their receptor binding abilities and biological functions via surface plasmon resonance (SPR) and biological analysis. Three candidate peptides, BHD1028, BHD43, and BHD44 were selected and confirmed to activate AdipoR1-mediated signal pathways. In order to enhance the stability and solubility of peptide agonists, candidate peptides were PEGylated. PEGylated BHD1028 exhibited its biological activity at nano-molar concentration and could be a potential therapeutic agent for the treatment of diabetes. Also, SPR and virtual screening techniques utilized in this study may potentially be applied to other peptide-drug screening processes against membrane receptor proteins.


Subject(s)
Biomimetics , Diabetes Mellitus, Type 2/drug therapy , Peptides/chemistry , Receptors, Adiponectin/chemistry , Adiponectin/agonists , Adiponectin/chemistry , Blood Glucose , Diabetes Mellitus, Type 2/blood , Diabetes Mellitus, Type 2/pathology , Fatty Acids/antagonists & inhibitors , Fatty Acids/chemistry , Humans , Insulin Resistance , Molecular Docking Simulation , Oxidation-Reduction , Peptides/therapeutic use , Protein Interaction Maps , Receptors, Adiponectin/agonists , Receptors, Adiponectin/therapeutic use , Signal Transduction/drug effects , Surface Plasmon Resonance
4.
Hawaii J Med Public Health ; 72(5): 157-60, 2013 May.
Article in English | MEDLINE | ID: mdl-23795319

ABSTRACT

Hawai'i is home to 1000 native species of flowering plants. Mucuna gigantea is one such Hawaiian species which has been studied as affordable sustenance and as a cover crop in developing countries. Mucuna gigantea and other Mucuna species (spp.) in general, are known to contain natural levodopa and its utility in the treatment of Parkinson's Disease has also been evaluated. Levodopa is converted in the periphery into dopamine which can then act on dopamine receptors to cause nausea, vomiting, arrhythmias, and hypotension. We describe a case in which a patient presents with abdominal pain, nausea, and vomiting after legume ingestion. The bean was ultimately identified as Mucuna gigantea and the patient was diagnosed with levodopa-induced gastrointestinal toxicity from consumption of the legume. A literature review was conducted using the database search engines, Biological Abstracts and PubMed, with a broad combination of keywords of which include "mucuna, "gigantean," "levodopa," "l-dopa," "toxicity," and the association between Mucuna gigantea ingestion and levodopa toxicity is discussed. These findings expand the differential diagnosis of abdominal pain associated with nausea and vomiting in the correct clinical context.


Subject(s)
Abdominal Pain/chemically induced , Dizziness/chemically induced , Levodopa/poisoning , Mucuna/poisoning , Adult , Dopamine Agents/poisoning , Eating , Female , Humans , Levodopa/administration & dosage , Mucuna/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL