Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 98
Filter
1.
Ecotoxicol Environ Saf ; 270: 115856, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38134637

ABSTRACT

Air pollutants, such as particulate matter (PM) and diesel exhaust particles (DEP), are associated with respiratory diseases. Therefore, preventive and therapeutic strategies against PM-and DEP (PM10D)-induced respiratory diseases are needed. Herein, we evaluate the protective effects of a mixture of Lactiplantibacillus plantarum KC3 and Leonurus Japonicas Houtt (LJH) extract against airway inflammation associated with exposure to PM10D. To determine the anti-inflammatory effects of the LJH extract, reactive oxygen species (ROS) production and the expression of inflammatory pathways were determined in PM10-induced MH-S cells. For the respiratory protective effects, BALB/c mice were exposed to PM10D via intranasal injection, and a mixture of L. plantarum KC3 and LJH extract was administered orally for 12 days. LJH extract inhibited ROS production and the phosphorylation of downstream factors of NF-κB in PM10-stimulated MH-S cells. The mixture of L. plantarum KC3 and LJH repressed the infiltration of neutrophils, reduced the immune cells number, and suppressed the proinflammatory mediators and cyclooxygenase (COX)-2 expressions in PM10D-induced airway inflammation with reduced phosphorylation of downstream factors of NF-κB. In addition, these effects were not observed in an alveolar macrophage depleted PM10D-induced mouse model using clodronate liposomes. The extract mixture also regulated gut microbiota in feces and upregulated the mRNA expression of Foxp3, transforming growth factor (TGF)-ß1, and interleukin (IL)-10 in the colon. The L. plantarum KC3 and LJH extract mixture may inhibit alveolar macrophage- and neutrophil-mediated inflammatory responses and regulate gut microbiota and immune response in PM10D-induced airway inflammation, suggesting it is a potential remedy to prevent and cure airway inflammation and respiratory disorders.


Subject(s)
Leonurus , Respiratory Tract Diseases , Mice , Animals , Leonurus/metabolism , NF-kappa B/metabolism , Reactive Oxygen Species/metabolism , Vehicle Emissions , Particulate Matter , Inflammation
2.
Microbiol Spectr ; 11(6): e0534922, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37819146

ABSTRACT

IMPORTANCE: The human gut microbiome mediates bidirectional interaction within the gut-liver axis, while liver diseases, including liver cirrhosis, are very closely related to the state of the gut environment. Thus, improving the health of the gut-liver axis by targeting the intestinal microbiota is a potential therapeutic approach in hepatic diseases. This study examines changes in metabolomics and microbiome composition by treating bacteria derived from the human gut in mice with liver cirrhosis. Interorgan-based multiomics profiling coupled with functional examination demonstrated that the treatment of Bacteroides dorei pertained to protective effects on liver cirrhosis by normalizing the functional, metabolic, and metagenomic environment through the gut-liver axis. The study provides the potential value of a multiomics-based and interorgan-targeted evaluation platform for the comprehensive examination and mechanistic understanding of a wide range of biologics, including gut microbes. Furthermore, the current finding also suggests in-depth future research focusing on the discovery and validation of next-generation probiotics and products (postbiotics).


Subject(s)
Liver Diseases , Multiomics , Male , Humans , Animals , Mice , Liver Cirrhosis/therapy , Liver/metabolism , Bacteroides/genetics
3.
Article in English | MEDLINE | ID: mdl-37804432

ABSTRACT

Type 2 diabetes (T2D) is known as adult-onset diabetes, but recently, T2D has increased in the number of younger people, becoming a major clinical burden in human society. The objective of this study was to determine the effects of Bifidobacterium and Lactiplantibacillus strains derived from the feces of 20 healthy humans on T2D development and to understand the mechanism underlying any positive effects of probiotics. We found that Bifidobacterium longum NBM7-1 (Chong Kun Dang strain 1; CKD1) and Lactiplantibacillus rhamnosus NBM17-4 (Chong Kun Dang strain 2; CKD2) isolated from the feces of healthy Korean adults (n = 20) have anti-diabetic effects based on the insulin sensitivity. During the oral gavage for 8 weeks, T2D mice were supplemented with anti-diabetic drugs (1.0-10 mg/kg body weight) to four positive and negative control groups or four probiotics (200 uL; 1 × 109 CFU/mL) to groups separately or combined to the four treatment groups (n = 6 per group). While acknowledging the relatively small sample size, this study provides valuable insights into the potential benefits of B. longum NBM7-1 and L. rhamnosus NBM17-4 in mitigating T2D development. The animal gene expression was assessed using a qRT-PCR, and metabolic parameters were assessed using an ELISA assay. We demonstrated that B. longum NBM7-1 in the CKD1 group and L. rhamnosus NBM17-4 in the CKD2 group alleviate T2D development through the upregulation of IL-22, which enhances insulin sensitivity and pancreatic functions while reducing liver steatosis. These findings suggest that B. longum NBM7-1 and L. rhamnosus NBM17-4 could be the candidate probiotics for the therapeutic treatments of T2D patients as well as the prevention of type 2 diabetes.

4.
Microorganisms ; 11(4)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37110390

ABSTRACT

Probiotics have been shown to possess anti-inflammatory effects in the gut by directly reducing the production of pro-inflammatory cytokines and by secreting anti-inflammatory molecules. However, their systemic anti-inflammatory effects have not been thoroughly investigated. In this study, we aimed to develop probiotics that have efficacy in both intestinal and lung inflammation. Lactobacillus plantarum KC3 (KC3), which was isolated from kimchi, was selected as a pre-candidate based on its inhibitory effects on the production of pro-inflammatory cytokines in vitro. To further validate the effectiveness of KC3, we used ear edema, DSS-induced colitis, and ambient particulate-matter-induced lung inflammation models. First, KC3 exhibited direct anti-inflammatory effects on intestinal cells with the inhibition of IL-1ß and TNF-α production. Additionally, KC3 treatment alleviated ear edema and DSS-induced colic inflammation, improving colon length and increasing the number of regulatory T cells. Beyond its local intestinal anti-inflammatory activity, KC3 inhibited pro-inflammatory cytokines in the bronchoalveolar fluid and prevented neutrophil infiltration in the lungs. These results suggest that KC3 could be a potential functional ingredient with respiratory protective effects against air-pollutant-derived inflammation, as well as for the treatment of local gut disorders.

5.
Front Microbiol ; 14: 1129904, 2023.
Article in English | MEDLINE | ID: mdl-36937300

ABSTRACT

Emerging evidences about gut-microbial modulation have been accumulated in the treatment of nonalcoholic fatty liver disease (NAFLD). We evaluated the effect of Bifidobacterium breve and Bifidobacterium longum on the NAFLD pathology and explore the molecular mechanisms based on multi-omics approaches. Human stool analysis [healthy subjects (n = 25) and NAFLD patients (n = 32)] was performed to select NAFLD-associated microbiota. Six-week-old male C57BL/6 J mice were fed a normal chow diet (NC), Western diet (WD), and WD with B. breve (BB) or B. longum (BL; 109 CFU/g) for 8 weeks. Liver/body weight ratio, histopathology, serum/tool analysis, 16S rRNA-sequencing, and metabolites were examined and compared. The BB and BL groups showed improved liver histology and function based on liver/body ratios (WD 7.07 ± 0.75, BB 5.27 ± 0.47, and BL 4.86 ± 0.57) and NAFLD activity scores (WD 5.00 ± 0.10, BB 1.89 ± 1.45, and BL 1.90 ± 0.99; p < 0.05). Strain treatment showed ameliorative effects on gut barrier function. Metagenomic analysis showed treatment-specific changes in taxonomic composition. The community was mainly characterized by the significantly higher composition of the Bacteroidetes phylum among the NC and probiotic-feeding groups. Similarly, the gut metabolome was modulated by probiotics treatment. In particular, short-chain fatty acids and tryptophan metabolites were reverted to normal levels by probiotics, whereas bile acids were partially normalized to those of the NC group. The analysis of gene expression related to lipid and glucose metabolism as well as the immune response indicated the coordinative regulation of ß-oxidation, lipogenesis, and systemic inflammation by probiotic treatment. BB and BL attenuate NAFLD by improving microbiome-associated factors of the gut-liver axis.

6.
J Microbiol ; 61(2): 245-257, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36745335

ABSTRACT

The progression and exacerbation of liver fibrosis are closely related to the gut microbiome. It is hypothesized that some probiotics may slow the progression of liver fibrosis. In human stool analysis [healthy group (n = 44) and cirrhosis group (n = 18)], difference in Lactobacillus genus between healthy group and cirrhosis group was observed. Based on human data, preventive and therapeutic effect of probiotics Lactobacillus lactis and L. rhamnosus was evaluated by using four mice fibrosis models. L. lactis and L. rhamnosus were supplied to 3,5-diethoxycarbonyl-1,4-dihydrocollidine or carbon tetrachloride-induced liver fibrosis C57BL/6 mouse model. Serum biochemical measurements, tissue staining, and mRNA expression in the liver were evaluated. The microbiome was analyzed in mouse cecal contents. In the mouse model, the effects of Lactobacillus in preventing and treating liver fibrosis were different for each microbe species. In case of L. lactis, all models showed preventive and therapeutic effects against liver fibrosis. In microbiome analysis in mouse models administered Lactobacillus, migration and changes in the ratio and composition of the gut microbial community were confirmed. L. lactis and L. rhamnosus showed preventive and therapeutic effects on the progression of liver fibrosis, suggesting that Lactobacillus intake may be a useful strategy for prevention and treatment.


Subject(s)
Lacticaseibacillus rhamnosus , Probiotics , Humans , Mice , Animals , Mice, Inbred C57BL , Lactobacillus , Liver Cirrhosis/prevention & control
7.
J Microbiol Biotechnol ; 32(5): 638-644, 2022 May 28.
Article in English | MEDLINE | ID: mdl-35354761

ABSTRACT

Probiotics modulate the gut microbiota, which in turn regulate immune responses to maintain balanced immune homeostasis in the host. However, it is unclear how probiotic bacteria regulate immune responses. In this study we investigated the immunomodulatory effects of heat-killed probiotics, including Lactiplantibacillus plantarum KC3 (LP3), Lactiplantibacillus plantarum CKDB008 (LP8), and Limosilactobacillus fermentum SRK414 (LF4), via phagocytosis, nitric oxide (NO), and pro-inflammatory cytokine production in macrophages. We thus found that heat-killed LP8 could promote the clearance of foreign pathogens by enhancing the phagocytosis of macrophages. Treatment with heat-killed LP8 induced the production of NO and pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1ß. In addition, heat-killed LP8 suppressed the production of NO and cytokines in LPS-induced RAW264.7 cells, suggesting that heat-killed LP8 exerts immunomodulatory effects depending on the host condition. In sum, these results indicate that heat-killed LP8 possesses the potential for immune modulation while providing a molecular basis for the development of functional probiotics prepared from inactivated bacterial cells.


Subject(s)
Hot Temperature , Probiotics , Animals , Cytokines , Macrophages , Mice , Nitric Oxide , Probiotics/pharmacology , RAW 264.7 Cells
8.
Clin Transl Med ; 11(12): e634, 2021 12.
Article in English | MEDLINE | ID: mdl-34965016

ABSTRACT

BACKGROUND: Although microbioa-based therapies have shown putative effects on the treatment of non-alcoholic fatty liver disease (NAFLD), it is not clear how microbiota-derived metabolites contribute to the prevention of NAFLD. We explored the metabolomic signature of Lactobacillus lactis and Pediococcus pentosaceus in NAFLD mice and its association in NAFLD patients. METHODS: We used Western diet-induced NAFLD mice, and L. lactis and P. pentosaceus were administered to animals in the drinking water at a concentration of 109 CFU/g for 8 weeks. NAFLD severity was determined based on liver/body weight, pathology and biochemistry markers. Caecal samples were collected for the metagenomics by 16S rRNA sequencing. Metabolite profiles were obtained from caecum, liver and serum. Human stool samples (healthy control [n = 22] and NAFLD patients [n = 23]) were collected to investigate clinical reproducibility for microbiota-derived metabolites signature and metabolomics biomarker. RESULTS: L. lactis and P. pentosaceus supplementation effectively normalized weight ratio, NAFLD activity score, biochemical markers, cytokines and gut-tight junction. While faecal microbiota varied according to the different treatments, key metabolic features including short chain fatty acids (SCFAs), bile acids (BAs) and tryptophan metabolites were analogously restored by both probiotic supplementations. The protective effects of indole compounds were validated with in vitro and in vivo models, including anti-inflammatory effects. The metabolomic signatures were replicated in NAFLD patients, accompanied by the comparable levels of Firmicutes/Bacteroidetes ratio, which was significantly higher (4.3) compared with control (0.6). Besides, the consequent biomarker panel with six stool metabolites (indole, BAs, and SCFAs) showed 0.922 (area under the curve) in the diagnosis of NAFLD. CONCLUSIONS: NAFLD progression was robustly associated with metabolic dys-regulations in the SCFAs, bile acid and indole compounds, and NAFLD can be accurately diagnosed using the metabolites. L. lactis and P. pentosaceus ameliorate NAFLD progression by modulating gut metagenomic and metabolic environment, particularly tryptophan pathway, of the gut-liver axis.


Subject(s)
Cellular Reprogramming/immunology , Gastrointestinal Microbiome/immunology , Lactobacillus/metabolism , Metabolome/immunology , Non-alcoholic Fatty Liver Disease/drug therapy , Pediococcus pentosaceus/metabolism , Animals , Benzofurans/metabolism , Cellular Reprogramming/physiology , Diet, Western/adverse effects , Disease Models, Animal , Feces/microbiology , Gastrointestinal Microbiome/physiology , Lactobacillus/pathogenicity , Metabolome/physiology , Mice , Non-alcoholic Fatty Liver Disease/physiopathology , Pediococcus pentosaceus/pathogenicity , Quinolines/metabolism
9.
Sci Rep ; 11(1): 16269, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34381083

ABSTRACT

The interest in skin microbiome differences by ethnicity, age, and gender is increasing. Compared to other ethnic groups, studies on the skin microbiome of Koreans remains insufficient; we investigated facial skin microbiome characteristics according to gender and age among Koreans. Fifty-one healthy participants were recruited, the facial skin characteristics of each donor were investigated, their skin bacterial DNA was isolated and metagenomic analysis was performed. The donors were divided into two groups for age and sex each to analyze their skin microbiomes. Moreover, we investigated the correlation between the skin microbiome and clinical characteristics. The alpha diversity of the skin microbiome was significantly higher in the elderly, and beta diversity was significantly different according to age. The comparative skin microbials showed that the genus Lawsonella was more abundant in the younger age group, and Enhydrobacter was predominant in the older age group. Staphylococcus and Corynebacterium were more abundant in males, while Lactobacillus was more abundant in females. Lawsonella had a negative correlation with skin moisture and brown spots. Staphylococcus and Corynebacterium both had negative correlations with the number of UV spots and positive correlations with transepidermal water loss (TEWL). Furthermore, Staphylococcus aureus had a negative correlation with skin moisture parameters.


Subject(s)
Bacteria/classification , Face/microbiology , Healthy Volunteers , Skin/microbiology , Adult , Age Factors , Aged , Asian People , Bacteria/genetics , DNA Barcoding, Taxonomic , Female , Humans , Male , Metagenomics , Middle Aged , Water Loss, Insensible , Young Adult
10.
J Microbiol Biotechnol ; 31(10): 1420-1429, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-34373437

ABSTRACT

The safety of the probiotic strain Q180, which exerts postprandial lipid-lowering effects, was bioinformatically and phenotypically evaluated. The genome of strain Q180 was completely sequenced, and single circular chromosome of 3,197,263 bp without any plasmid was generated. Phylogenetic and related analyses using16S rRNA gene and whole-genome sequences revealed that strain Q180 is a member of Lactiplantibacillus (Lp., formerly Lactobacillus) plantarum. Antimicrobial resistance (AMR) genes were bioinformatically analyzed using all Lp. plantarum genomes available in GenBank, which showed that AMR genes are present differently depending on Lp. plantarum strains. Bioinformatic analysis demonstrated that some mobile genetic elements such as prophages and insertion sequences were identified in the genome of strain Q180, but because they did not contain harmful genes such as AMR genes and virulence factor (VF)- and toxin-related genes, it was suggested that there is no transferability of harmful genes. The minimum inhibition concentrations of seven tested antibiotics suggested by the European Food Safety Authority guidelines were slightly lower than or equal to the microbiological cut-off values for Lp. plantarum. Strain Q180 did not show hemolytic and gelatinase activities and biogenic amine-producing ability. Taken together, this study demonstrated the safety of strain Q180 in terms of absence of AMR genes and VF- and toxin-related genes as a probiotic strain.


Subject(s)
Genome, Bacterial , Lactobacillus plantarum/genetics , Probiotics , Biogenic Amines , Computational Biology , DNA Transposable Elements , Drug Resistance, Bacterial/genetics , Microbial Sensitivity Tests , Phylogeny , Prophages/genetics , Virulence Factors/genetics , Whole Genome Sequencing
11.
J Microbiol Biotechnol ; 31(4): 592-600, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33820891

ABSTRACT

Probiotics can be processed into a powder, tablet, or capsule form for easy intake. They are exposed to frequent stresses not only during complex processing steps, but also in the human body after intake. For this reason, various coating agents that promote probiotic bacterial stability in the intestinal environment have been developed. Silk fibroin (SF) is a material used in a variety of fields from drug delivery systems to enzyme immobilization and has potential as a coating agent for probiotics. In this study, we investigated this potential by coating probiotic strains with 0.1% or 1% water-soluble calcium (WSC), 1% SF, and 10% trehalose. Under simulated gastrointestinal conditions, cell viability, cell surface hydrophobicity, and cell adhesion to intestinal epithelial cells were then measured. The survival ratio after freeze-drying was highest upon addition of 0.1% WSC. The probiotic bacteria coated with SF showed improved survival by more than 10.0% under simulated gastric conditions and 4.8% under simulated intestinal conditions. Moreover, the cell adhesion to intestinal epithelial cells was elevated by 1.0-36.0%. Our results indicate that SF has positive effects on enhancing the survival and adhesion capacity of bacterial strains under environmental stresses, thus demonstrating its potential as a suitable coating agent to stabilize probiotics throughout processing, packaging, storage and consumption.


Subject(s)
Bacteria/drug effects , Bacterial Adhesion/drug effects , Biocompatible Materials/pharmacology , Fibroins/pharmacology , Calcium Signaling , Freeze Drying , HT29 Cells , Humans , Hydrophobic and Hydrophilic Interactions , Microbial Viability/drug effects , Probiotics
12.
Probiotics Antimicrob Proteins ; 13(4): 1054-1067, 2021 08.
Article in English | MEDLINE | ID: mdl-33569747

ABSTRACT

Obesity is one of the major causes of the development of metabolic diseases, particularly cardiovascular diseases and type-2 diabetes mellitus. Increased lipid accumulation and abnormal adipocyte growth, which is an increase in cell numbers and differentiation, have been documented as major pathological characteristics of obesity. Thus, the inhibition of adipogenic differentiation prevents and suppresses obesity. Recently, specific probiotic strains have been known to regulate lipid metabolism in vitro and/or in vivo. Previously, we demonstrated that Lactobacillus johnsonni 3121 and Lactobacillus rhamnosus 86 could act as novel probiotic strains and reduce cholesterol levels. Moreover, both strains significantly reduced lipid accumulation and inhibited adipocyte differentiation by downregulating the adipogenic transcription factor in 3T3-L1 adipocytes. Therefore, L. johnsonni 3121 and L. rhamnosus 86 were selected for in vivo evaluation of their anti-obesity effects using a high-fat diet-induced obese mouse model. Daily oral administration of L. johnsonni 3121 and L. rhamnosus 86 for 12 weeks significantly improved serum lipid profile and downregulated the expression of genes related to adipogenesis and lipogenesis in epididymal white adipose tissue of high-fat diet fed obese mice (p < 0.05). Fecal analysis also suggested that the two probiotic strains could normalize the altered obesity-related gut microbiota in high-fat diet-fed obese mice. These results collectively demonstrate that oral administration of L. johnsonni 3121 and L. rhamnosus 86 could prevent obesity, thereby improving metabolic health.


Subject(s)
Diet, High-Fat , Lactobacillus , Obesity , Probiotics , 3T3-L1 Cells , Animals , Diet, High-Fat/adverse effects , Lipids , Mice , Obesity/etiology , Obesity/therapy
13.
Appl Microbiol Biotechnol ; 105(3): 1203-1213, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33443636

ABSTRACT

Recent reports suggest that obesity is caused by dysbiosis of gut microbiota and that it could be prevented or treated through improvement in the composition and diversity of gut microbiota. In this study, high-fat diet (HFD)-induced obese mice were orally administered with Lactobacillus plantarum K50 (K50) isolated from kimchi and Lactobacillus rhamnosus GG (LGG) as a positive control for 12 weeks. Body weight and weights of epididymal, mesenteric, and subcutaneous adipose tissues and the liver were significantly reduced in K50-treated HFD-fed mice compared with HFD-fed mice. The serum triglyceride level was decreased and high-density lipoprotein cholesterol level was increased in K50-treated HFD-fed mice. The gut microbiota analysis showed that the L. plantarum K50 treatment reduced the Firmicutes/Bacteroidetes ratio and improved the gut microbiota composition. In addition, the level of total short-chain fatty acids (SCFAs) in K50-treated HFD-fed mice was higher than that in HFD-fed mice. A remarkable reduction in the fat content of adipose tissue and liver was also observed in K50-treated HFD-fed mice, accompanied by improvements in gene expression related to lipid metabolism, adipogenesis, and SCFA receptors. K50-treated mice had downregulated expression levels of genes and proteins such as TNFα and IL-1ß. Our findings confirm that L. plantarum K50 could be a good candidate for ameliorating fat accumulation and low-grade inflammation in metabolic tissues through gut microbiota improvement.


KEY POINTS: • Lactobacillus plantarum and L. rhamnosus GG were fed to HFD-induced obese mice.• L. plantarum K50 had dramatic ameliorating effects on obesity and related diseases.• These effects may be associated with the restoration of gut microbiota dysbiosis.


Subject(s)
Gastrointestinal Microbiome , Probiotics , Animals , Diet, High-Fat/adverse effects , Inflammation , Mice , Mice, Inbred C57BL , Mice, Obese
14.
Clin Mol Hepatol ; 27(1): 110-124, 2021 01.
Article in English | MEDLINE | ID: mdl-33317254

ABSTRACT

BACKGROUND/AIMS: Nonalcoholic fatty liver disease (NAFLD) is closely related to gut-microbiome. There is a paucity of research on which strains of gut microbiota affect the progression of NAFLD. This study explored the NAFLD-associated microbiome in humans and the role of Lactobacillus in the progression of NAFLD in mice. METHODS: The gut microbiome was analyzed via next-generation sequencing in healthy people (n=37) and NAFLD patients with elevated liver enzymes (n=57). Six-week-old male C57BL/6J mice were separated into six groups (n=10 per group; normal, Western, and four Western diet + strains [109 colony-forming units/g for 8 weeks; L. acidophilus, L. fermentum, L. paracasei, and L. plantarum]). Liver/body weight ratio, liver pathology, serum analysis, and metagenomics in the mice were examined. RESULTS: Compared to healthy subjects (1.6±4.3), NAFLD patients showed an elevated Firmicutes/Bacteroidetes ratio (25.0±29.0) and a reduced composition of Akkermansia and L. murinus (P<0.05). In the animal experiment, L. acidophilus group was associated with a significant reduction in liver/body weight ratio (5.5±0.4) compared to the Western group (6.2±0.6) (P<0.05). L. acidophilus (41.0±8.6), L. fermentum (44.3±12.6), and L. plantarum (39.0±7.6) groups showed decreased cholesterol levels compared to the Western group (85.7±8.6) (P<0.05). In comparison of steatosis, L. acidophilus (1.9±0.6), L. plantarum (2.4±0.7), and L. paracasei (2.0±0.9) groups showed significant improvement of steatosis compared to the Western group (2.6±0.5) (P<0.05). CONCLUSION: Ingestion of Lactobacillus, such as L. acidophilus, L. fermentum, and L. plantarum, ameliorates the progression of nonalcoholic steatosis by lowering cholesterol. The use of Lactobacillus can be considered as a useful strategy for the treatment of NAFLD.


Subject(s)
Gastrointestinal Microbiome , Non-alcoholic Fatty Liver Disease , Animals , Cholesterol , Female , Humans , Lactobacillus , Liver , Male , Mice , Mice, Inbred C57BL , Middle Aged
15.
Gut Microbes ; 12(1): 1829449, 2020 11 09.
Article in English | MEDLINE | ID: mdl-33131411

ABSTRACT

According to our recent study (N.Y. LEE et al. Gut Microbes 2020; 11:882-99.)1, we reported that Lactobacillus and Pediococcus ameliorate progression of nonalcoholic fatty liver disease through modulation of the gut microbiome. According on the analysis method (Previous: 16s rRNA sequencing and Recent: whole gene sequencing), the probiotics named Lactobacillus bulgaricus that we used in the experiment was identified as Lactobacillus delbrueckii subsp. bulgaricus through 16s rRNA sequencing analysis. Recently, we performed a clearer analysis with whole gene sequencing to proceed with the clinical trial, it was identified as Lactobacillus delbrueckii subsp. lactis by whole gene sequencing. Therefore, we inform that the subspecies have been changed to lactis through WGS. Read L. bulgaricus in the previous paper as L. lactis. In this addendum, the results of the change to L. lactis are summarized, and descriptions have been added to Materials & methods and Discussion.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus/physiology , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/microbiology , Probiotics/administration & dosage , Adult , Animals , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Cultured Milk Products/microbiology , Cytokines/genetics , Cytokines/immunology , Disease Models, Animal , Disease Progression , Feces/microbiology , Female , Humans , Infant , Lactobacillus/genetics , Lactobacillus/isolation & purification , Liver/immunology , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/immunology , Non-alcoholic Fatty Liver Disease/pathology
16.
Microorganisms ; 8(6)2020 Jun 04.
Article in English | MEDLINE | ID: mdl-32512895

ABSTRACT

Inflammatory bowel disease (IBD) is a group of conditions involving chronic relapsing-remitting inflammation of the gastrointestinal tract with an unknown etiology. Although the cause-effect relationship between gut microbiota and IBD has not been clearly established, emerging evidence from experimental models supports the idea that gut microbes play a fundamental role in the pathogenesis of IBD. As microbiome-based therapeutics for IBD, the beneficial effects of probiotics have been found in animal colitis models and IBD patients. In this study, based on the dextran sulfate sodium (DSS)-induced colitis mouse model, we investigated Lactobacillus rhamnosus strain LDTM 7511 originating from Korean infant feces as a putative probiotic strain for IBD. The strain LDTM 7511 not only alleviated the release of inflammatory mediators, but also induced the transition of gut microbiota from dysbiotic conditions, exhibiting the opposite pattern in the abundance of DSS colitis-associated bacterial taxa to the DSS group. Our findings suggest that the strain LDTM 7511 has the potential to be used as a probiotic treatment for IBD patients in comparison to L. rhamnosus GG (ATCC 53103), which has been frequently used for IBD studies.

17.
PLoS One ; 15(2): e0228932, 2020.
Article in English | MEDLINE | ID: mdl-32040532

ABSTRACT

Although the beneficial effects of probiotics in the prevention or treatment of metabolic disorders have been extensively researched, the precise mechanisms by which probiotics improve metabolic homeostasis are still not clear. Given that probiotics usually exert a comprehensive effect on multiple metabolic disorders, defining a concurrent mechanism underlying the multiple effects is critical to understand the function of probiotics. In this study, we identified the SIRT1-dependent or independent PGC-1α pathways in multiple organs that mediate the protective effects of a strain of Lactobacillus plantarum against high-fat diet-induced adiposity, glucose intolerance, and dyslipidemia. L. plantarum treatment significantly enhanced the expression of SIRT1, PPARα, and PGC-1α in the liver and adipose tissues under HFD-fed condition. L. plantarum treated mice also exhibited significantly increased expressions of genes involved in bile acid synthesis and reverse cholesterol transport in the liver, browning and thermogenesis of adipose tissue, and fatty acid oxidation in the liver and adipose tissue. Additionally, L. plantarum treatment significantly upregulated the expressions of adiponectin in adipose tissue, irisin in skeletal muscle and subcutaneous adipose tissue (SAT), and FGF21 in SAT. These beneficial changes were associated with a significantly improved HFD-induced alteration of gut microbiota. Our findings suggest that the PGC-1α-mediated pathway could be regarded as a potential target in the development of probiotics-based therapies for the prevention and treatment of metabolic disorders.


Subject(s)
Diet, High-Fat/adverse effects , Metabolic Diseases/prevention & control , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Probiotics/therapeutic use , Adipose Tissue/metabolism , Adiposity , Animals , Bile Acids and Salts/biosynthesis , Cholesterol/metabolism , Dyslipidemias/metabolism , Dyslipidemias/prevention & control , Dyslipidemias/therapy , Gastrointestinal Microbiome , Glucose Intolerance/metabolism , Glucose Intolerance/prevention & control , Glucose Intolerance/therapy , Lactobacillus plantarum/physiology , Lipid Metabolism , Liver/metabolism , Male , Metabolic Diseases/metabolism , Metabolic Diseases/therapy , Mice , Mice, Inbred C57BL , Signal Transduction , Sirtuin 1/metabolism
18.
Gut Microbes ; 11(4): 882-899, 2020 07 03.
Article in English | MEDLINE | ID: mdl-31965894

ABSTRACT

Targeting the gut-liver axis by modulating the gut-microbiome can be a promising therapeutic approach in nonalcoholic fatty liver disease (NAFLD). The aim of this study was to evaluate the effects of single species and a combination of Lactobacillus and Pediococcus in NAFLD mice model. Six-week male C57BL/6J mice were divided into 9 groups (n = 10/group; normal, Western diet, and 7 Western diet-strains [109 CFU/g, 8 weeks]). The strains used were L. bulgaricus, L. casei, L. helveticus, P. pentosaceus KID7, and three combinations (1: L. casei+L. helveticus, 2: L. casei+L. helveticus+P. pentosaceus KID7, and 3: L. casei+L. helveticus+L. bulgaricus). Liver/Body weight ratio, serum and stool analysis, liver pathology, and metagenomics by 16S rRNA-sequencing were examined. In the liver/body ratio, L. bulgaricus (5.1 ± 0.5), L. helveticus (5.2 ± 0.4), P. pentosaceus KID7 (5.5 ± 0.5), and combination1 and 2 (4.2 ± 0.6 and 4.8 ± 0.7) showed significant reductions compared with Western (6.2 ± 0.6)(p < 0.001). In terms of cholesterol and steatosis/inflammation/NAFLD activity, all groups except for L. casei were associated with an improvement (p < .05). The elevated level of tumor necrosis factor-α/interleukin-1ß (pg/ml) in Western (65.8 ± 7.9/163.8 ± 12.2) was found to be significantly reduced in L. bulgaricus (24.2 ± 1.0/58.9 ± 15.3), L. casei (35.6 ± 2.1/62.9 ± 6.0), L. helveticus (43.4 ± 3.2/53.6 ± 7.5), and P. pentosaceus KID7 (22.9 ± 3.4/59.7 ± 12.2)(p < 0.01). Cytokines were improved in the combination groups. In metagenomics, each strains revealed a different composition and elevated Firmicutes/Bacteroidetes ratio in the western (47.1) was decreased in L. bulgaricus (14.5), L. helveticus (3.0), and P. pentosaceus KID7 (13.3). L. bulgaricus, L. casei, L. helveticus, and P. pentosaceus KID7 supplementation can improve NAFLD-progression by modulating gut-microbiome and inflammatory pathway.


Subject(s)
Gastrointestinal Microbiome , Lactobacillus/physiology , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/therapy , Pediococcus pentosaceus/physiology , Probiotics , Animals , Bacteroidetes/growth & development , Cholesterol/blood , Cytokines/metabolism , Diet, Western , Disease Models, Animal , Disease Progression , Firmicutes/growth & development , Inflammation/physiopathology , Liver/pathology , Liver/physiopathology , Male , Metagenomics , Mice , Mice, Inbred C57BL , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/physiopathology
19.
Nutrients ; 12(1)2020 Jan 19.
Article in English | MEDLINE | ID: mdl-31963808

ABSTRACT

Probiotics can improve the intestinal environment by enhancing beneficial bacteria to potentially regulate lipid levels; however, the underlying mechanisms remain unclear. The aim of this study was to investigate the effect of Lactobacillus plantarum Q180 (LPQ180) on postprandial lipid metabolism and the intestinal microbiome environment from a clinical perspective. A double-blind, randomized, placebo-controlled study was conducted including 70 participants of both sexes, 20 years of age and older, with healthy blood triacylglyceride (TG) levels below 200 mg/dL. Treatment with LPQ180 for 12 weeks significantly decreased LDL-cholesterol (p = 0.042) and apolipoprotein (Apo)B-100 (p = 0.003) levels, and decreased postprandial maximum concentrations (Cmax) and areas under the curve (AUC) of TG, chylomicron TG, ApoB-48, and ApoB-100. LPQ180 treatment significantly decreased total indole and phenol levels (p = 0.019). In addition, there was a negative correlation between baseline microbiota abundance and lipid marker change, which was negatively correlated with metabolites. This study suggests that LPQ180 might be developed as a functional ingredient to help maintain healthy postprandial lipid levels through modulating gut environment.


Subject(s)
Bacteria/drug effects , Gastrointestinal Microbiome/drug effects , Lactobacillus plantarum/physiology , Lipids/blood , Postprandial Period , Probiotics/administration & dosage , Adult , Bacteria/metabolism , Biomarkers/blood , Double-Blind Method , Feces/microbiology , Female , Humans , Male , Middle Aged , Probiotics/adverse effects , Seoul , Time Factors , Treatment Outcome
20.
PLoS One ; 12(1): e0168854, 2017.
Article in English | MEDLINE | ID: mdl-28045958

ABSTRACT

The aim of this study was to evaluate the efficacy and safety of recombinant human epidermal growth factor (rhEGF) oral spray for oral mucositis (OM) induced by intensive chemotherapy with hematopoietic stem cell transplantation. In this phase 2 study, patients were randomized to either rhEGF (50 microg/mL) or placebo in a 1:1 ratio. The primary endpoint was incidence of National Cancer Institute (NCI) grade ≥2 OM. A total of 138 patients were enrolled in this study. In the intention-to-treat analysis, rhEGF did not reduce the incidence of NCI grade ≥2 OM (p = 0.717) nor reduce its duration (p = 0.725). Secondary endpoints including the day of onset and duration of NCI grade ≥2 OM, the incidence of NCI grade ≥3 OM and its duration, and patient-reported quality of life were also similar between the two groups. In the per-protocol analysis, however, the duration of opioid analgesic use was shorter in the rhEGF group (p = 0.036), and recipients in the rhEGF group required a lower cumulative dose of opioid analgesics than those in the placebo group (p = 0.046), among patients with NCI grade ≥2 OM. Adverse events were mild and transient. This study found no evidence to suggest that rhEGF oral spray reduces the incidence of OM. However, further studies are needed to investigate the effect of rhEGF on OM-induced pain reduction after intensive chemotherapy.


Subject(s)
Epidermal Growth Factor/administration & dosage , Hematopoietic Stem Cell Transplantation , Recombinant Proteins/administration & dosage , Stomatitis/drug therapy , Administration, Topical , Adolescent , Adult , Aged , Analgesics, Opioid/therapeutic use , Antineoplastic Agents/therapeutic use , Double-Blind Method , Epidermal Growth Factor/therapeutic use , Female , Hematologic Neoplasms/therapy , Humans , Incidence , Male , Middle Aged , Quality of Life , Recombinant Proteins/therapeutic use , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...