Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jan 08.
Article in English | MEDLINE | ID: mdl-38260287

ABSTRACT

Background: Cardiac risk rises during acute SARS-CoV-2 infection and in long COVID syndrome in humans, but the mechanisms behind COVID-19-linked arrhythmias are unknown. This study explores the acute and long term effects of SARS-CoV-2 on the cardiac conduction system (CCS) in a hamster model of COVID-19. Methods: Radiotelemetry in conscious animals was used to non-invasively record electrocardiograms and subpleural pressures after intranasal SARS-CoV-2 infection. Cardiac cytokines, interferon-stimulated gene expression, and macrophage infiltration of the CCS, were assessed at 4 days and 4 weeks post-infection. A double-stranded RNA mimetic, polyinosinic:polycytidylic acid (PIC), was used in vivo and in vitro to activate viral pattern recognition receptors in the absence of SARS-CoV-2 infection. Results: COVID-19 induced pronounced tachypnea and severe cardiac conduction system (CCS) dysfunction, spanning from bradycardia to persistent atrioventricular block, although no viral protein expression was detected in the heart. Arrhythmias developed rapidly, partially reversed, and then redeveloped after the pulmonary infection was resolved, indicating persistent CCS injury. Increased cardiac cytokines, interferon-stimulated gene expression, and macrophage remodeling in the CCS accompanied the electrophysiological abnormalities. Interestingly, the arrhythmia phenotype was reproduced by cardiac injection of PIC in the absence of virus, indicating that innate immune activation was sufficient to drive the response. PIC also strongly induced cytokine secretion and robust interferon signaling in hearts, human iPSC-derived cardiomyocytes (hiPSC-CMs), and engineered heart tissues, accompanied by alterations in electrical and Ca 2+ handling properties. Importantly, the pulmonary and cardiac effects of COVID-19 were blunted by in vivo inhibition of JAK/STAT signaling or by a mitochondrially-targeted antioxidant. Conclusions: The findings indicate that long term dysfunction and immune cell remodeling of the CCS is induced by COVID-19, arising indirectly from oxidative stress and excessive activation of cardiac innate immune responses during infection, with implications for long COVID Syndrome.

2.
Adv Healthc Mater ; 13(2): e2301124, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37820720

ABSTRACT

A nanopatterned interdigitated electrode array (nanoIEA)-based impedance assay is developed for quantitative real-time measurement of aligned endothelial cell (EC) barrier functions in vitro. A bioinspired poly(3,4-dihydroxy-L-phenylalanine) (poly (l-DOPA)) coating is applied to improve the human brain EC adhesion onto the Nafion nanopatterned surfaces. It is found that a poly (l-DOPA)-coated Nafion grooved nanopattern makes the human brain ECs orient along the nanopattern direction. Aligned human brain ECs on Nafion nanopatterns exhibit increased expression of genes encoding tight and adherens junction proteins. Aligned human brain ECs also have enhanced impedance and resistance versus unaligned ones. Treatment with a glycogen synthase kinase-3 inhibitor (GSK3i) further increases impedance and resistance, suggesting synergistic effects occur on the cell-cell tightness of in vitro human brain ECs via a combination of anisotropic matrix nanotopography and GSK3i treatment. It is found that this enhanced cell-cell tightness of the combined approach is accompanied by increased expression of claudin protein. These data demonstrate that the proposed nanoIEA assay integrated with poly (l-DOPA)-coated Nafion nanopatterns and interdigitated electrode arrays can make not only biomimetic aligned ECs, but also enable real-time measurement of the enhanced barrier functions of aligned ECs via tighter cell-cell junctions.


Subject(s)
Endothelial Cells , Fluorocarbon Polymers , Levodopa , Humans , Electric Impedance , Levodopa/metabolism , Levodopa/pharmacology , Endothelium
3.
Adv Biol (Weinh) ; : e2300165, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37840439

ABSTRACT

The interactions between immune cells and epithelial cells influence the progression of many respiratory diseases, such as chronic obstructive pulmonary disease (COPD). In vitro models allow for the examination of cells in controlled environments. However, these models lack the complex 3D architecture and vast multicellular interactions between the lung resident cells and infiltrating immune cells that can mediate cellular response to insults. In this study, three complementary microphysiological systems are presented to delineate the effects of cigarette smoke and respiratory disease on the lung epithelium. First, the Transwell system allows the co-culture of pulmonary immune and epithelial cells to evaluate cellular and monolayer phenotypic changes in response to cigarette smoke exposure. Next, the human and mouse precision-cut lung slices system provides a physiologically relevant model to study the effects of chronic insults like cigarette smoke with the dissection of specific interaction of immune cell subtypes within the structurally complex tissue environment. Finally, the lung-on-a-chip model provides an adaptable system for live imaging of polarized epithelial tissues that mimic the in vivo environment of the airways. Using a combination of these models, a complementary approach is provided to better address the intricate mechanisms of lung disease.

4.
Chem Commun (Camb) ; 58(72): 10012-10015, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35943217

ABSTRACT

A nanopatterned poly(3,4-ethylenedioxythiophene) (PEDOT):Nafion composite layer integrated with interdigitated electrodes was developed to improve the device dynamic range and sensitivity for cellular impedance spectroscopy. The nanopattern fidelity to provide cellular alignment was accessed at different mixing volumes of PEDOT to Nafion. The ion transfer rate and electrical conductivity of Nafion were improved as the mixing ratio of PEDOT increased and it provided a uniform electrical path, thus giving conformable characteristics at all spectral frequencies from 1 kHz to 100 kHz for cellular impedance spectroscopy. Computational modeling was provided to extrapolate the electrical current flow and density in the composite with respect to the different frequency ranges. These results highlight that an electrically modified Nafion nanopattern interface, combined with interdigitated electrodes, can be used for various types of impedance-based cellular biosensors in a more biomimetic and sensitive manner.


Subject(s)
Biosensing Techniques , Bridged Bicyclo Compounds, Heterocyclic , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Electric Impedance , Fluorocarbon Polymers , Polymers
5.
Med Eng Phys ; 106: 103843, 2022 08.
Article in English | MEDLINE | ID: mdl-35926954

ABSTRACT

Aging induces marked alterations in the structural, mechanical, and transport properties in the extracellular matrix (ECM). To provide computational data on the impact of aging-related changes on ECM mechanical quantities and transport properties, we developed a computational model for the aging-related ECM fibrous network. A finite volume method was utilized to calculate the velocity field, pressure loss, hydraulic conductivity and drag force. Our results quantitatively demonstrated that the hydraulic conductivity in most of the aging ECM-mimetic fibrous networks tends to be significantly lower than young ECM-mimetic fibrous networks, while pressure loss and drag force show the opposite trend. All these findings highlight that such altered mechanical quantities and transport properties during aging can be important biological cues to assess the aging process and eventually provide insights in treating aging-related diseases.


Subject(s)
Extracellular Matrix , Mechanical Phenomena , Extracellular Matrix/chemistry , Stress, Mechanical
6.
Brain Stimul ; 11(5): 1044-1053, 2018.
Article in English | MEDLINE | ID: mdl-30072144

ABSTRACT

BACKGROUND: The adoption of transcranial Direct Current Stimulation (tDCS) is encouraged by portability and ease-of-use. However, the preparation of tDCS electrodes remains the most cumbersome and error-prone step. Here, we validate the performance of the first "dry" electrodes for tDCS. A "dry electrode" excludes 1) any saline or other electrolytes, that are prone to spread and leaving a residue; 2) any adhesive at the skin interface; or 3) any electrode preparation steps except the connection to the stimulator. The Multilayer Hydrogel Composite (MHC) dry-electrode design satisfied these criteria. OBJECTIVE/HYPOTHESIS: Over an exposed scalp (supraorbital (SO) regions of forehead), we validated the performance of the first "dry" electrode for tDCS against the state-of-the-art conventional wet sponge-electrode to test the hypothesis that whether tDCS can be applied with a dry electrode with comparable tolerability as conventional "wet" techniques? METHODS: MHC dry-electrode performance was verified using a skin-phantom, including mapping voltage at the phantom surface and mapping current inside the electrode using a novel biocompatible flexible printed circuit board current sensor matrix (fPCB-CSM). MHC dry-electrode performance was validated in a human trial including tolerability (VAS and adverse events), skin redness (erythema), and electrode current mapping with the fPCB-CSM. Experimental data from skin-phantom stimulation were compared against a finite element method (FEM) model. RESULTS: Under the tested conditions (1.5 mA and 2 mA tDCS for 20 min using MHC-dry and sponge-electrode), the tolerability was improved, and the erythema and adverse-events were comparable between the MHC dry-electrode and the state-of-the-art sponge electrodes. CONCLUSION: Dry (residue-free, non-spreading, non-adhesive, and no-preparation-needed) electrodes can be tolerated under the tested tDCS conditions, and possibly more broadly used in non-invasive electrical stimulation.


Subject(s)
Adhesives/administration & dosage , Hydrogels/administration & dosage , Skin Physiological Phenomena/drug effects , Transcranial Direct Current Stimulation/methods , Adhesives/adverse effects , Adult , Electrodes/adverse effects , Female , Humans , Hydrogels/adverse effects , Male , Young Adult
7.
Nat Commun ; 6: 6566, 2015 Mar 18.
Article in English | MEDLINE | ID: mdl-25782446

ABSTRACT

Hard and soft structural composites found in biology provide inspiration for the design of advanced synthetic materials. Many examples of bio-inspired hard materials can be found in the literature; far less attention has been devoted to soft systems. Here we introduce deterministic routes to low-modulus thin film materials with stress/strain responses that can be tailored precisely to match the non-linear properties of biological tissues, with application opportunities that range from soft biomedical devices to constructs for tissue engineering. The approach combines a low-modulus matrix with an open, stretchable network as a structural reinforcement that can yield classes of composites with a wide range of desired mechanical responses, including anisotropic, spatially heterogeneous, hierarchical and self-similar designs. Demonstrative application examples in thin, skin-mounted electrophysiological sensors with mechanics precisely matched to the human epidermis and in soft, hydrogel-based vehicles for triggered drug release suggest their broad potential uses in biomedical devices.


Subject(s)
Biomimetic Materials , Materials Testing , Biocompatible Materials/chemistry , Biomimetics , Drug Delivery Systems , Elastic Modulus , Electronics , Electrophysiology , Epidermis/metabolism , Finite Element Analysis , Hardness , Humans , Hydrogels/chemistry , Imides/chemistry , Skin , Stress, Mechanical , Tensile Strength , Tissue Engineering/methods
8.
Nat Commun ; 5: 4779, 2014 Sep 03.
Article in English | MEDLINE | ID: mdl-25182939

ABSTRACT

Research in stretchable electronics involves fundamental scientific topics relevant to applications with importance in human healthcare. Despite significant progress in active components, routes to mechanically robust construction are lacking. Here, we introduce materials and composite designs for thin, breathable, soft electronics that can adhere strongly to the skin, with the ability to be applied and removed hundreds of times without damaging the devices or the skin, even in regions with substantial topography and coverage of hair. The approach combines thin, ultralow modulus, cellular silicone materials with elastic, strain-limiting fabrics, to yield a compliant but rugged platform for stretchable electronics. Theoretical and experimental studies highlight the mechanics of adhesion and elastic deformation. Demonstrations include cutaneous optical, electrical and radio frequency sensors for measuring hydration state, electrophysiological activity, pulse and cerebral oximetry. Multipoint monitoring of a subject in an advanced driving simulator provides a practical example.


Subject(s)
Blood Gas Monitoring, Transcutaneous/instrumentation , Electronics/instrumentation , Equipment Design , Monitoring, Physiologic/instrumentation , Oximetry/instrumentation , Blood Gas Monitoring, Transcutaneous/methods , Brain/physiology , Elasticity , Electrophysiological Phenomena , Humans , Monitoring, Physiologic/methods , Oximetry/methods , Silicones/chemistry , Skin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...