Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Nat Commun ; 15(1): 148, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38168097

ABSTRACT

Music exists in almost every society, has universal acoustic features, and is processed by distinct neural circuits in humans even with no experience of musical training. However, it remains unclear how these innate characteristics emerge and what functions they serve. Here, using an artificial deep neural network that models the auditory information processing of the brain, we show that units tuned to music can spontaneously emerge by learning natural sound detection, even without learning music. The music-selective units encoded the temporal structure of music in multiple timescales, following the population-level response characteristics observed in the brain. We found that the process of generalization is critical for the emergence of music-selectivity and that music-selectivity can work as a functional basis for the generalization of natural sound, thereby elucidating its origin. These findings suggest that evolutionary adaptation to process natural sounds can provide an initial blueprint for our sense of music.


Subject(s)
Music , Humans , Acoustic Stimulation , Auditory Perception/physiology , Brain/physiology , Hearing
2.
Phys Rev Lett ; 125(14): 140604, 2020 Oct 02.
Article in English | MEDLINE | ID: mdl-33064547

ABSTRACT

This Letter presents a neural estimator for entropy production (NEEP), that estimates entropy production (EP) from trajectories of relevant variables without detailed information on the system dynamics. For steady state, we rigorously prove that the estimator, which can be built up from different choices of deep neural networks, provides stochastic EP by optimizing the objective function proposed here. We verify the NEEP with the stochastic processes of the bead spring and discrete flashing ratchet models and also demonstrate that our method is applicable to high-dimensional data and can provide coarse-grained EP for Markov systems with unobservable states.

SELECTION OF CITATIONS
SEARCH DETAIL