Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Kans J Med ; 15: 331-335, 2022.
Article in English | MEDLINE | ID: mdl-36196104

ABSTRACT

Introduction: Transitioning from one clinical rotation to the next may be particularly stressful for orthopaedic residents attempting to navigate new work environments with new faculty mentors and new patients. The purpose of this quality improvement (QI) project was to determine if resident stress could be improved by using a handbook to disseminate key rotation-specific data during quarterly rotation transition periods. Methods: A comprehensive electronic handbook was created by residents to describe each rotation in our orthopaedic training program in terms of: (1) faculty and staff contact data, (2) daily clinic and surgery schedules, (3) resident responsibilities and faculty expectations, and (4) key resources and documents. At rotation transition, a session in the academic schedule was dedicated for outgoing residents to update the handbook and to sign-out to incoming residents. Pre- and post-handbook questionnaires were administered to assess resident perceptions of stress or anxiety, preparedness, and confidence before commencing the new rotation. Nonparametric data derived from the surveys were analyzed using the sign test choosing p < 0.05 for a two-tailed test as the level of statistical significance. Results: Most residents perceived improvements in stress/anxiety, preparedness, and confidence understanding rotation expectations after the handbook was implemented. Changes in these three outcome parameters were statistically significant. Conclusions: This rotation transition QI initiative consisting of a resident-authored, rotation-specific electronic handbook and dedicated verbal sign-out session enhanced resident wellness by decreasing stress, increasing preparedness, and improving confidence among residents starting a new rotation. Similar online resources may be useful for trainees in other specialties.

2.
iScience ; 23(5): 101090, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32380419

ABSTRACT

Proteasomes are multi-subunit protease complexes found in all domains of life. The maturation of the core particle (CP), which harbors the active sites, involves dimerization of two half CPs (HPs) and an autocatalytic cleavage that removes ß propeptides. How these steps are regulated remains poorly understood. Here, we used the Rhodococcus erythropolis CP to dissect this process in vitro. Our data show that propeptides regulate the dimerization of HPs through flexible loops we identified. Furthermore, N-terminal truncations of the propeptides accelerated HP dimerization and decelerated CP auto-activation. We identified cooperativity in autocatalysis and found that the propeptide can be partially cleaved by adjacent active sites, potentially aiding an otherwise strictly autocatalytic mechanism. We propose that cross-processing during bacterial CP maturation is the underlying mechanism leading to the observed cooperativity of activation. Our work suggests that the bacterial ß propeptide plays an unexpected and complex role in regulating dimerization and autocatalytic activation.

SELECTION OF CITATIONS
SEARCH DETAIL
...