Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 13(2)2022 Jan 22.
Article in English | MEDLINE | ID: mdl-35208293

ABSTRACT

Anti-counterfeiting technologies for small products are being developed. We present an anti-counterfeiting tag, a grayscale pattern of silver nanowires (AgNWs) on a flexible substrate. The anti-counterfeiting tag that is observable with a thermal imaging camera was fabricated using the characteristics of silver nanowires with high visible light transmittance and high infrared emissivity. AgNWs were patterned at microscale via a maskless lithography method using UV dicing tape with UV patterns. By attaching and detaching an AgNW coated glass slide and UV dicing tape irradiated with multiple levels of UV, we obtained AgNW patterns with four or more grayscales. Peel tests confirmed that the adhesive strength of the UV dicing tape varied according to the amount of UV irradiation, and electrical resistance and IR image intensity measurements confirmed that the pattern obtained using this tape has multi-level AgNW concentrations. When applied for anti-counterfeiting, the gradient-concentration AgNW micropattern could contain more information than a single-concentration micropattern. In addition, the gradient AgNW micropattern could be transferred to a flexible polymer substrate using a simple method and then attached to various surfaces for use as an anti-counterfeiting tag.

2.
Nat Commun ; 12(1): 4724, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34354060

ABSTRACT

We introduce highly programmable microscale swimmers driven by the Marangoni effect (Marangoni microswimmers) that can self-propel on the surface of water. Previous studies on Marangoni swimmers have shown the advantage of self-propulsion without external energy source or mechanical systems, by taking advantage of direct conversion from power source materials to mechanical energy. However, current developments on Marangoni microswimmers have limitations in their fabrication, thereby hindering their programmability and precise mass production. By introducing a photopatterning method, we generated Marangoni microswimmers with multiple functional parts with distinct material properties in high throughput. Furthermore, various motions such as time-dependent direction change and disassembly of swimmers without external stimuli are programmed into the Marangoni microswimmers.

3.
Adv Mater ; 32(37): e2001249, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32725925

ABSTRACT

DNA-based data storage has attracted attention because of its higher physical density of the data and longer retention time than those of conventional digital data storage. However, previous DNA-based data storage lacked index features and the data quality of storage after a single access was not preserved, obstructing its industrial use. Here, DNA micro-disks, QR-coded micro-sized disks that harbor data-encoded DNA molecules for the efficient management of DNA-based data storage, are proposed. The two major features that previous DNA-based data-storage studies could not achieve are demonstrated. One feature is accessing data items efficiently by indexing the data-encoded DNA library. Another is achieving write-once-read-many (WORM) memory through the immobilization of DNA molecules on the disk and their enrichment through in situ DNA production. Through these features, the reliability of DNA-based data storage is increased by allowing selective and multiple accession of data-encoded DNA with lower data loss than previous DNA-based data storage methods.


Subject(s)
Computer Storage Devices , DNA , Information Storage and Retrieval/methods
4.
Sci Rep ; 9(1): 6582, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036920

ABSTRACT

DNA-based data storage has emerged as a promising method to satisfy the exponentially increasing demand for information storage. However, practical implementation of DNA-based data storage remains a challenge because of the high cost of data writing through DNA synthesis. Here, we propose the use of degenerate bases as encoding characters in addition to A, C, G, and T, which augments the amount of data that can be stored per length of DNA sequence designed (information capacity) and lowering the amount of DNA synthesis per storing unit data. Using the proposed method, we experimentally achieved an information capacity of 3.37 bits/character. The demonstrated information capacity is more than twice when compared to the highest information capacity previously achieved. The proposed method can be integrated with synthetic technologies in the future to reduce the cost of DNA-based data storage by 50%.


Subject(s)
DNA/genetics , Databases, Nucleic Acid , Information Storage and Retrieval , Base Sequence/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...