Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 46, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167804

ABSTRACT

Addressing age-related immunological defects through therapeutic interventions is essential for healthy aging, as the immune system plays a crucial role in controlling infections, malignancies, and in supporting tissue homeostasis and repair. In our study, we show that stimulating toll-like receptor 5 (TLR5) via mucosal delivery of a flagellin-containing fusion protein effectively extends the lifespan and enhances the healthspan of mice of both sexes. This enhancement in healthspan is evidenced by diminished hair loss and ocular lens opacity, increased bone mineral density, improved stem cell activity, delayed thymic involution, heightened cognitive capacity, and the prevention of pulmonary lung fibrosis. Additionally, this fusion protein boosts intestinal mucosal integrity by augmenting the surface expression of TLR5 in a certain subset of dendritic cells and increasing interleukin-22 (IL-22) secretion. In this work, we present observations that underscore the benefits of TLR5-dependent stimulation in the mucosal compartment, suggesting a viable strategy for enhancing longevity and healthspan.


Subject(s)
Longevity , Toll-Like Receptor 5 , Animals , Mice , Flagellin/metabolism , Intestinal Mucosa/metabolism , Longevity/genetics , Lung/metabolism
2.
Small Methods ; 7(9): e2300376, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37291738

ABSTRACT

High-performing 2D electrical and optical devices can be realized by forming an ideal van der Waals (vdW) metal contact with weak interactions and stable interface states. However, the methods for applying metal contacts while avoiding damage from metal deposition present challenges in realizing a uniform, stable vdW interface. To overcome this problem, this study develops a method for forming vdW contacts using a sacrificial Se buffer layer. This study explores this method by investigating the difference in the Schottky barrier height between the vdW metal contact deposited using a buffer layer, a transferred metal contact, and a conventional directly deposited metal contact using rectification and photovoltaic characteristics of a Schottky diode structure with graphite. Evidently, the Se buffer layer method forms the most stable and ideal vdW contact while preventing Fermi-level pinning. A tungsten diselenide Schottky diode fabricated using these vdW contacts with Au and graphite as the top and bottom electrodes, respectively, exhibits excellent operation with an ideality factor of ≈1, an on/off ratio of > 107 , and coherent properties. Additionally, when using only the vdW Au contact, the electrical and optical properties of the device can be minutely modulated by changing the structure of the Schottky diode.

3.
Mol Imaging ; 2022: 9222331, 2022.
Article in English | MEDLINE | ID: mdl-35517712

ABSTRACT

Purpose: Bacterial cancer therapy (BCT) research using engineered Salmonella typhimurium has increased in recent years. 2-Deoxy-2[18F] fluoro-D-glucose positron emission tomography (FDG PET) is widely used in cancer patients to detect cancer, monitor treatment responses, and predict prognoses. The aim of this pilot study was to investigate FDG uptake patterns in a mouse tumor model after BCT. Procedures. BCT was performed via the intravenous injection of attenuated S. typhimurium (SLΔppGpp/lux) into female mice bearing a tumor (derived from CT26 murine colon cancer cells) in the right thigh. 18F-FDG PET images acquired before BCT and at different time points after BCT. In vivo bioluminescence imaging confirmed bacterial presence in the tumor. The tumor volume, standardized uptake value (SUV) of FDG (SUVmax and SUVmean), early SUV reduction%, and normalized tumor volume change were analyzed. Results: Early after BCT (1 or 2 days post-injection (dpi)), FDG tumor uptake decreased in 10 out of 11 mice and then increased at later stages. FDG uptake before BCT was correlated with normalized tumor volume change after BCT. Early FDG reduction% after BCT was correlated with normalized volume change after BCT. Conclusions: Early after BCT, FDG tumor uptake decreased and then increased at later stages. The higher the FDG tumor uptake before BCT, the better the BCT response. FDG uptake patterns were related to tumor volume change after BCT. Therefore, FDG uptake was a good candidate for evaluating BCT.


Subject(s)
Colonic Neoplasms , Fluorodeoxyglucose F18 , Animals , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/therapy , Female , Glucose , Humans , Mice , Pilot Projects , Positron-Emission Tomography/methods , Radiopharmaceuticals , Salmonella typhimurium
4.
Adv Mater ; 34(18): e2108777, 2022 May.
Article in English | MEDLINE | ID: mdl-35293650

ABSTRACT

2D multiferroics with combined ferroic orders have gained attention owing to their novel functionality and underlying science. Intrinsic ferroelastic-ferroelectric multiferroicity in single-crystalline van der Waals rhenium dichalcogenides, whose symmetries are broken by the Peierls distortion and layer-stacking order, is demonstrated. Ferroelastic switching of the domain orientation and accompanying anisotropic properties is achieved with 1% uniaxial strain using the polymer encapsulation method. Based on the electron localization function and bond dissociation energy of the Re-Re bonds, the change in bond configuration during the evolution of the domain wall and the preferred switching between the two specific orientation states are explained. Furthermore, the ferroelastic switching of ferroelectric polarization is confirmed using the photovoltaic effect. The study provides insights into the reversible bond-switching process and potential applications based on 2D multiferroicity.

5.
J Nucl Med ; 62(7): 956-960, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33509975

ABSTRACT

Surface-exposed calreticulin (ecto-CRT) is a well-known "eat-me" signal exhibited by dying cells that contributes to their recognition and destruction by the immune system. We assessed the use of a CRT-specific binding peptide for imaging ecto-CRT during immunogenic cell death and its utility for early prediction of treatment response. Methods: A synthetic CRT-specific peptide, KLGFFKR (CRTpep), was labeled with fluorescein isothiocyanate or 18F, and the characteristics of ecto-CRT were evaluated in a colon cancer cell line in vitro and in vivo. Results: In vitro flow cytometry, immunofluorescence staining, and in vivo small-animal PET imaging results showed that CRTpep detected preapoptotic cells treated with immunogenic drugs or radiation but not those treated with the nonimmunogenic drug or a nontherapeutic dose of immunogenic drug. Conclusion: The present results indicate that the CRT-specific peptide would enable the prediction of therapeutic response, thereby facilitating early decisions on continuation or discontinuation of immunogenic treatment.


Subject(s)
Immunogenic Cell Death , Antineoplastic Agents , Early Detection of Cancer , Humans , Neoplasms
6.
Bioconjug Chem ; 31(11): 2607-2617, 2020 11 18.
Article in English | MEDLINE | ID: mdl-33108158

ABSTRACT

Dual-modular imaging approaches combining near-infrared (NIR) fluorescence (FLI) and photoacoustic imaging (PAI) require suitable contrast agents to produce dual-modular signals. Although nanoparticles have been used to develop PAI agents, small molecule-based imaging agents have not been extensively studied, highlighting the need to design new fluorophores with an enhanced multifunctional ability. Thus, in this study, we designed a novel squaraine (SQ)-based dye and reported its rational preparation and conjugation with a cancer targeting peptide. Specifically, benzoindole-derived SQ (BSQ) showed strong absorption and fluorescence properties at above 650 nm under aqueous conditions, with a maximum absorption and emission at 665 and 680 nm, respectively. Moreover, PA signal scanning experiments revealed a maximum signal intensity in the range 680-700 nm. BSQ was also conjugated with cyclic arginine-glycine-aspartic acid (cRGD) to improve its active targeting ability for the αvß3 integrin, which is overexpressed in various cancer and angiogenic cells. A series of in vitro, in vivo, and ex vivo FLI studies showed that the cRGD conjugated BSQ (BSQ-RGD2) successfully stained and targeted αvß3 integrin-overexpressing tumor cells and xenografts, which were clearly visualized by FLI and PAI. Therefore, BSQ-RGD2 can successfully be applied to dual-modular imaging of the specific biomarker in living animals.


Subject(s)
Cyclobutanes/chemistry , Molecular Probes/chemistry , Optical Imaging/methods , Phenols/chemistry , Photoacoustic Techniques/methods , Animals , Heterografts , Humans , Integrin alphaVbeta3/metabolism , Mice , Mice, Inbred BALB C , Neoplasms/metabolism , Peptides, Cyclic/chemistry , Solubility , Spectroscopy, Near-Infrared/methods
7.
Mech Ageing Dev ; 192: 111355, 2020 12.
Article in English | MEDLINE | ID: mdl-32941937

ABSTRACT

Senescent cells are deeply involved in the induction of tissue damage and aging-related diseases. The identification of factors that eliminate senescent cells or inhibit the senescence-associated secretory phenotype (SASP) in these cells is necessary. Here, we report an avenanthramice C (Avn C) extracted from oat as a new SASP modulator. Treatment with Avn C led to a significant reduction in the levels of markers of senescent cells, with no toxicity observed. The SASP was also inhibited by Avn C treatment, similar to non-senescent cells, and the suppression of cell division by autocrine signals associated with SASP was restored. To investigate the mechanism underlying SASP inhibition by Avn C, we analyzed the effect of Avn C in lipopolysaccharide (LPS)-induced inflammation in non-senescent cells. Avn C inhibited nuclear factor κB (NF-κB) activity and the secretion of inflammatory cytokines before or after LPS treatment. Although the activity of MAP kinases, which are NF-κB upstream signals, was inhibited by Avn C in LPS-induced inflammation, only p38 activity was specifically inhibited in senescent cells. Interestingly, the inhibition of p38 in senescent cells was observed through Avn C-induced 5'-adenosine monophosphate-activated protein kinase (AMPK) activity. Avn C-induced inhibition of the SASP is triggered by senescence-related stress.


Subject(s)
Cellular Senescence , Inflammation , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Protein Kinases/metabolism , ortho-Aminobenzoates/pharmacology , AMP-Activated Protein Kinase Kinases , Autocrine Communication/drug effects , Cell Division/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Cellular Senescence/physiology , Cytokines/biosynthesis , Enzyme Inhibitors/pharmacology , Fibroblasts , Humans , Inflammation/drug therapy , Inflammation/metabolism
8.
J Cardiovasc Imaging ; 28(2): 94-105, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32052606

ABSTRACT

BACKGROUND: We evaluated whether lesion-specific measurement of myocardial blood flow (MBF) and flow reserve (MFR) by hybrid imaging of myocardial perfusion positron emission tomography (PET) and coronary computed tomography (CT) can provide additional diagnostic value. METHODS: Forty-three patients with stable angina underwent N-13 ammonia PET and coronary CT before invasive coronary angiography (CAG). The lesion-specific MBF was calculated from the average MBF of the myocardial segments downstream of a coronary stenosis using hybrid PET/CT images. The hyperemic MBF, resting MBF, and MFR were measured for the left anterior descending artery (LAD) using conventional and lesion-specific methods. The diagnostic accuracy was compared between the two methods for significant LAD stenoses (≥ 70% reference diameter on CAG). RESULTS: There were 19 significant LAD stenoses. The sensitivity, specificity, negative predictive value, positive predictive value, and accuracy were 71%, 68%, 74%, 65%, and 70% for conventional hyperemic MBF (optimal cutoff = 2.15 mL/min/g), 79%, 63%, 74%, 65%, and 70% for conventional MFR (optimal cutoff = 1.82), 83%, 74%, 80%, 78%, and 80% for lesion-specific hyperemic MBF (optimal cutoff = 1.75 mL/min/g), and 79%, 79%, 83%, 75%, and 79% for lesion-specific MFR (optimal cutoff = 1.86), respectively. The lesion-specific measurement was more accurate and had a better linear correlation with anatomical stenosis severity for both hyperemic MBF and MFR. CONCLUSIONS: Lesion-specific measurement using hybrid PET/CT imaging showed significant improvement in the diagnostic accuracy of PET-measured hyperemic MBF and MFR.

9.
Chonnam Med J ; 55(2): 109-115, 2019 May.
Article in English | MEDLINE | ID: mdl-31161123

ABSTRACT

We evaluated the efficacy of fimasartan on perfusion defects and infarction size in an animal model of myocardial infarction (MI), with echocardiography and positron emission tomography (PET) using a 18F-labeled phosphonium cation (5-[18F]-fluoropentyl-triphenylphosphonium salt, [18F]FPTP) as a mitochondrial voltage sensor for myocardial imaging. We induced MI in 33 rats by ligation of the left coronary artery, and checked their cardiac PET image using [18F]FPTP for evaluation of myocardial perfusion. Rats were grouped into 3 groups according to their administered drugs: no drug (n=11), fimasartan 3 mg/kg (n=10), and fimasartan 10 mg/kg (n=12). Each designated drug was administered for 4 weeks, and follow-up PET and histologic examinations were done. In the PET analysis, a perfusion defect size was markedly improved in fimasartan 10 mg/kg group (35.9±7.0% to 28.4±6.9%, p<0.001), whereas treatment with fimasartan 3 mg/kg induced only an insignificant reduction of perfusion defect size (35.9±7.9% to 33.9±7.3%, p=0.095). Using 2, 3, 5-triphenyltetrazolium chloride staining, infarction size was the largest in the control group (36.5±8.3%), and was insignificantly lower in the fimasartan 3 mg/kg group (31.5±6.5%, p for the difference between the control group=0.146) and was significantly lower in the fimasartan 10 mg/kg group (26.3±7.6%, p for the difference between the control group=0.011). PET imaging using a 18F-labeled mitochondrial voltage sensor, [18F]FPTP, is useful in evaluation and monitoring of myocardial perfusion states, and treatment with fimasartan decreases the infarction size in animal MI model.

10.
Phys Med ; 58: 32-39, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30824147

ABSTRACT

PURPOSE: We propose a multi-atlas based segmentation method for cardiac PET and SPECT images to deal with the high variability of tracer uptake characteristics in myocardium. In addition, we verify its performance by comparing it to the manual segmentation and single-atlas based approach, using dynamic myocardial PET. METHODS: Twelve left coronary artery ligated SD rats underwent ([18F]fluoropentyl) triphenylphosphonium salt PET/CT scans. Atlas-based segmentation is based on the spatial normalized template with pre-defined region-of-interest (ROI) for each anatomical or functional structure. To generate multiple left ventricular (LV) atlases, each LV image was segmented manually and divided into angular segments. The segmentation methods performances were compared in regional count information using leave-one-out cross-validation. Additionally, the polar-maps of kinetic parameters were estimated. RESULTS: In all images, the highest r2 template yielded the lowest root-mean-square error (RMSE) between the source image and the best-matching templates ranged between 0.91-0.97 and 0.06-0.11, respectively. The single-atlas and multi-atlas based ROIs yielded remarkably different perfusion distributions: only the multi-atlas based segmentation showed equivalent high correlation results (r2 = 0.92) with the manual segmentation compared with the single-atlas based (r2 = 0.88). The high perfusion value underestimation was remarkable in single-atlas based segmentation. CONCLUSIONS: The main advantage of the proposed multi-atlas based cardiac segmentation method is that it does not require any prior information on the tracer distribution to be incorporated into the image segmentation algorithms. Therefore, the same procedure suggested here is applicable to any other cardiac PET or SPECT imaging agents without modification.


Subject(s)
Heart/diagnostic imaging , Image Processing, Computer-Assisted/methods , Animals , Organophosphorus Compounds , Rats , Rats, Sprague-Dawley
11.
J Nucl Med ; 60(7): 924-929, 2019 07.
Article in English | MEDLINE | ID: mdl-30552204

ABSTRACT

Malignant melanoma is an aggressive and serious form of skin cancer, with prognosis and treatment outcome depending heavily on the clinical stage of the disease at the time of diagnosis. Here, we synthesized a novel 18F-labeled benzamide derivative to target melanoma and then evaluated its biologic characteristics in small-animal models. Methods:N-(2-(dimethylamino)ethyl)-4-18F-fluorobenzamide (18F-DMFB) was synthesized by reaction of N-succinimidyl 4-18F-fluorobenzoate with N,N-dimethylethylenediamine. The binding affinity of 18F-DMFB was measured in B16F10 (mouse melanoma) cells with or without l-tyrosine. Small-animal PET imaging with 18F-DMFB was performed on B16F10 xenograft and metastasis mouse models. Results: The overall non-decay-corrected radiochemical yield of 18F-DMFB was approximately 10%-15%. Uptake of 18F-DMFB was melanin-specific, as cellular uptake in B16F10 increased more than 18-fold in the presence of l-tyrosine. Biodistribution studies revealed that 18F-DMFB accumulated, and was retained, in B16F10 xenografts for 120 min (10, 30, 60, and 120 min: 9.24, 10.80, 13.0, and 10.59 percentage injected dose/g, respectively) after radiotracer injection. Liver uptake of 18F-DMFB decreased from 10 to 120 min and showed fast clearance (10, 30, 60, and 120 min: 11.19, 5.7, 2.47, and 0.4 percentage injected dose/g). Furthermore, 18F-DMFB allowed visualization of metastatic lesions immediately after injection and was retained in lesions for over 60 min, with a high tumor-to-background ratio. Conclusion:18F-DMFB demonstrated a high melanin-targeting ability and tumor-specific tumor uptake in both primary and metastatic lesions in animal models bearing malignant melanoma. 18F-DMFB may be a potential PET imaging agent for melanoma.


Subject(s)
Benzamides/metabolism , Melanoma/diagnostic imaging , Molecular Probes/metabolism , Positron-Emission Tomography/methods , Skin Neoplasms/diagnostic imaging , Animals , Benzamides/pharmacokinetics , Biological Transport , Cell Line, Tumor , Drug Stability , Humans , Melanoma/metabolism , Melanoma/pathology , Mice , Molecular Probes/pharmacokinetics , Neoplasm Metastasis , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tissue Distribution
13.
Bioorg Med Chem Lett ; 28(5): 915-921, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29422388

ABSTRACT

Carbonic anhydrase IX is overexpressed in many solid tumors including hypoxic tumors and is a potential target for cancer therapy and diagnosis. Reported imaging agents targeting CA-IX are successful mostly in clear cell renal carcinoma as SKRC-52 and no candidate was approved yet in clinical trials for imaging of CA-IX. To validate CA-IX as a valid target for imaging of hypoxic tumor, we designed and synthesized novel [18F]-PET tracer (1) based on acetazolamide which is one of the well-known CA-IX inhibitors and performed imaging study in CA-IX expressing hypoxic tumor model as 4T1 and HT-29 in vivo models other than SKRC-52. [18F]-acetazolamide (1) was found to be insufficient for the specific accumulation in CA-IX expressing tumor. This study might be useful to understand in vivo behavior of acetazolamide PET tracer and can contribute to the development of successful PET imaging agents targeting CA-IX in future. Additional study is needed to understand the mechanism of poor targeting of CA-IX, as if CA-IX is not reliable as a sole target for imaging of CA-IX expressing hypoxic solid tumors.


Subject(s)
Acetazolamide/chemistry , Carbonic Anhydrase IX/analysis , Carbonic Anhydrase Inhibitors/chemistry , Carcinoma, Renal Cell/enzymology , Kidney Neoplasms/enzymology , Positron-Emission Tomography , Acetazolamide/chemical synthesis , Acetazolamide/pharmacokinetics , Animals , Carbonic Anhydrase IX/biosynthesis , Carbonic Anhydrase IX/metabolism , Carbonic Anhydrase Inhibitors/chemical synthesis , Carbonic Anhydrase Inhibitors/pharmacokinetics , Carcinoma, Renal Cell/diagnosis , Fluorine Radioisotopes , Humans , Kidney Neoplasms/diagnosis , Mice , Mice, Inbred BALB C , Neoplasms, Experimental/diagnosis , Neoplasms, Experimental/enzymology , Tissue Distribution
14.
J Nucl Med ; 59(2): 340-346, 2018 02.
Article in English | MEDLINE | ID: mdl-28916621

ABSTRACT

The epidermal growth factor receptor (EGFR) is a member of the erbB family of receptors and is overexpressed in many tumor types. A repebody is a newly designed nonantibody protein scaffold for tumor targeting that contains leucine-rich repeat modules. In this study, 3 64Cu-labeled anti-EGFR repebodies with different chelators were synthesized, and their biologic characteristics were assessed in cultured cells and tumor-bearing mice. Methods: Repebodies were synthesized with the chelators 2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-N,N',N,″-triacetic acid trihydrochloride ([p-SCN-Bn]-NOTA), 2,2',2″-(10-(2-(2,5-dioxopyrrolidin-1-yloxy)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-triyl) triacetic acid (DOTA-N-hydroxysuccinimide ester), or 1-(p-isothiocyanatobenzyl)diethylenetriamine pentaacetic acid trihydrochloride ([p-SCN-Bn]-DTPA) in 1.0 M NaHCO3 buffer (pH 9.2) for 24 h. Purified NOTA-, DOTA-, and DTPA-conjugated repebody were radiolabeled with 64Cu in 0.1 M NH4OAc buffer (pH 5.5). To compare the EGFR-binding affinities of the repebodies, cellular uptake studies were performed with the human non-small cell lung cancer cell line H1650 (high expression of EGFR) and the human colon adenocarcinoma cell line SW620 (low expression of EGFR). Biodistribution and small-animal PET imaging studies were performed using H1650 tumor-bearing mice. Results: Radiochemical yields of the 64Cu-labeled repebodies were approximately 70%-80%. Cellular uptake of the NOTA-, DOTA-, and DTPA-repebodies was over 4-fold higher in H1650 cells than in SW620 cells at 1 h. The 3 repebodies had accumulated specifically in H1650 tumor-bearing nude mice by 1 h after intravenous injection and were retained for over 24 h, as measured by the percentage injected dose per gram of tissue (%ID/g). Tumor uptake of all repebodies increased from 1 to 6 h (at 1 h, 6.28, 8.46, and 6.91 %ID/g for NOTA-, DOTA-, and DTPA-repebody, respectively; at 6 h, 9.4, 8.28, and 10.1 %ID/g, respectively). H1650 tumors were clearly visible after injection of each repebody, with high tumor-to-background ratios (at 1 h, 3.43, 4.89, and 2.38 for NOTA-, DOTA-, and DTPA-repebody, respectively; at 6 h, 3.05, 4.36, and 2.08; at 24 h, 3.81, 4.58, and 2.86). Conclusion: The 3 64Cu-repebody complexes demonstrated specific and rapid uptake in EGFR-expressing tumors within 1 h and may have potential as novel EGFR imaging agents for PET.


Subject(s)
Antibodies/chemistry , Copper Radioisotopes , ErbB Receptors/metabolism , Gene Expression Regulation, Neoplastic , Animals , Antibodies/metabolism , Biological Transport , Cell Line, Tumor , Cell Transformation, Neoplastic , Humans , Isotope Labeling , Mice , Tissue Distribution
15.
Carbohydr Polym ; 181: 27-33, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29253972

ABSTRACT

The development of biologically targeted contrast agents for X-ray computed tomography (CT) imaging remains a major challenge. Here, we investigated a green chemistry-based synthesis of lymph node-targeted mannan-capped gold nanoparticles (M-GNPs) as a CT contrast agent. In this study, mannan was used as a reducing and stabilizing agent for gold nanoparticles (AuNPs). M-GNPs were readily internalized by antigen-presenting cells (APCs) through mannose receptors-mediated endocytosis. The M-GNPs, which had a spherical morphology, had an average diameter of 9.18±0.71nm and surface plasmon resonance (SPR) absorption spectra with maximal absorption at 522nm. The M-GNPs displayed a concentration-based X-ray attenuation property with a maximum Hounsfield unit (HU) value of 303.2±10.83. The local administration of M-GNPs led to significantly enhanced X-ray contrast for the imaging of popliteal lymph nodes. These findings demonstrated that M-GNPs can be used as biologically targeted contrast agents for CT imaging.


Subject(s)
Gold/chemistry , Green Chemistry Technology/methods , Imaging, Three-Dimensional , Lymph Nodes/diagnostic imaging , Metal Nanoparticles/chemistry , Polysaccharides/biosynthesis , Tomography, X-Ray Computed , Animals , Cell Line , Cell Survival , Endocytosis , Gold/classification , Lectins, C-Type/metabolism , Mannans/chemistry , Mannose Receptor , Mannose-Binding Lectins/metabolism , Metal Nanoparticles/ultrastructure , Mice , Receptors, Cell Surface/metabolism
16.
Angew Chem Int Ed Engl ; 56(44): 13684-13688, 2017 10 23.
Article in English | MEDLINE | ID: mdl-28869355

ABSTRACT

Bilirubin (BR), a bile pigment that exerts potent antioxidant and anti-inflammatory effects, is also a major constituent of black pigment gallstones found in bile ducts under certain pathological conditions. Inspired by the intrinsic metal-chelating power of BR found in gallstones, herein we report a cisplatin-chelated BR-based nanoparticle (cisPt@BRNP) for use as a new photonic nanomedicine for combined photoacoustic imaging and photothermal therapy of cancers. The cisPt@BRNPs were prepared by simply mixing cisplatin with BRNPs, yielding ca. 150-nm-size NPs. Upon near-IR laser irradiation at 808 nm, cisPt@BRNPs generated considerable heat and induced clear death of cancer cells in vitro. Following intravenous injection into human colon cancer-bearing mice, cisPt@BRNPs allowed effective tumor visualization by photoacoustic imaging and remarkable antitumor efficacy by photothermal therapy, suggesting their potential for use as a new photonic nanomedicine for cancer therapy.


Subject(s)
Antineoplastic Agents/therapeutic use , Bilirubin/therapeutic use , Cisplatin/therapeutic use , Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/therapy , Nanoparticles/therapeutic use , Theranostic Nanomedicine/methods , Animals , Antineoplastic Agents/chemistry , Bilirubin/chemistry , Chelating Agents/chemistry , Chelating Agents/therapeutic use , Cisplatin/chemistry , HT29 Cells , Humans , Hyperthermia, Induced/methods , Infrared Rays , Mice , Nanoparticles/chemistry , Photoacoustic Techniques/methods , Phototherapy/methods , Platinum/chemistry , Platinum/therapeutic use
17.
Theranostics ; 7(10): 2620-2633, 2017.
Article in English | MEDLINE | ID: mdl-28819451

ABSTRACT

The accurate detection of disease-related biomarkers is crucial for the early diagnosis and management of disease in personalized medicine. Here, we present a molecular imaging of human epidermal growth factor receptor (EGFR)-expressing malignant tumors using an EGFR-specific repebody composed of leucine-rich repeat (LRR) modules. The repebody was labeled with either a fluorescent dye or radioisotope, and used for imaging of EGFR-expressing malignant tumors using an optical method and positron emission tomography. Our approach enabled visualization of the status of EGFR expression, allowing quantitative evaluation in whole tumors, which correlated well with the EGFR expression levels in mouse or patients-derived colon cancers. The present approach can be effectively used for the accurate detection of EGFR-expressing cancers, assisting in the development of a tool for detecting other disease biomarkers.


Subject(s)
Colonic Neoplasms/diagnostic imaging , Colonic Neoplasms/pathology , ErbB Receptors/analysis , Molecular Imaging/methods , Animals , Humans , Leucine-Rich Repeat Proteins , Mice , Optical Imaging/methods , Positron-Emission Tomography/methods , Proteins/metabolism
18.
PLoS One ; 12(7): e0180786, 2017.
Article in English | MEDLINE | ID: mdl-28686661

ABSTRACT

In a previous study, we developed an E1 monobody specific for the tumor biomarker hEphA2 [PLoS ONE (2015) 10(7): e0132976]. E1 showed potential as a molecular probe for in vitro and in vivo targeting of cancers overexpressing hEphA2. In the present study, we constructed expression vectors for E1 conjugated to optical reporters such as Renilla luciferase variant 8 (Rluc8) or enhanced green fluorescent protein (EGFP) and purified such recombinant proteins by affinity chromatography in E. coli. E1-Rluc8 and E1-EGFP specifically bound to hEphA2 in human prostate cancer PC3 cells but not in human cervical cancer HeLa cells, which express hEphA2 at high and low levels, respectively. These recombinant proteins maintained >40% activity in mouse serum at 24 h. In vivo optical imaging for 24 h did not detect E1-EGFP signals, whereas E1-Rluc8 showed tumor-specific luminescence signals in PC3 but not in HeLa xenograft mice. E1-Rluc8 signals were detected at 4 h, peaked at 12 h, and were undetectable at 24 h. These results suggest the potential of E1-Rluc8 as an EphA2-specific optical imaging agent.


Subject(s)
Antibodies, Neoplasm/chemistry , Biomarkers, Tumor/analysis , Immunoconjugates/chemistry , Receptor, EphA2/analysis , Recombinant Fusion Proteins/genetics , Animals , Antibodies, Neoplasm/biosynthesis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cell Line, Tumor , Escherichia coli/genetics , Escherichia coli/metabolism , Female , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HeLa Cells , Heterografts , Humans , Immunoconjugates/metabolism , Luciferases/genetics , Luciferases/metabolism , Male , Mice, Inbred BALB C , Mice, Nude , Optical Imaging , Organ Specificity , Protein Engineering , Receptor, EphA2/genetics , Receptor, EphA2/metabolism , Recombinant Fusion Proteins/metabolism
20.
Ann Nucl Med ; 31(6): 469-479, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28444503

ABSTRACT

OBJECTIVE: (18F-fluoropentyl)triphenylphosphonium salt (18F-FPTP) is a new promising myocardial PET imaging tracer. It shows high accumulation in cardiomyocytes and rapid clearance from liver. We performed compartmental analysis of 18F-FPTP PET images in rat and evaluated two linear analyses: linear least-squares (LLS) and a basis function method (BFM) for generating parametric images. The minimum dynamic scan duration for kinetic analysis was also investigated and computer simulation undertaken. METHODS: 18F-FPTP dynamic PET (18 min) and CT images were acquired from rats with myocardial infarction (MI) (n = 12). Regions of interest (ROIs) were on the left ventricle, normal myocardium, and MI region. Two-compartment (K 1 and k 2; 2C2P) and three-compartment (K 1-k 3; 3C3P) models with irreversible uptake were compared for goodness-of-fit. Partial volume and spillover correction terms (V a and α = 1 - V a ) were also incorporated. LLS and BFM were applied to ROI- and voxel-based kinetic parameter estimations. Results were compared with the standard ROI-based nonlinear least-squares (NLS) results of the corresponding compartment model. A simulation explored statistical properties of the estimation methods. RESULTS: The 2C2P model was most suitable for describing 18F-FPTP kinetics. Average K 1, k 2, and V a values were, respectively, 6.8 (ml/min/g), 1.1 (min-1), and 0.44 in normal myocardium and 1.4 (ml/min/g), 1.1 (min-1), and 0.32, in MI tissue. Ten minutes of data was sufficient for the estimation. LLS and BFM estimations correlated well with NLS values for the ROI level (K 1: y = 1.06x + 0.13, r 2  = 0.96 and y = 1.13x + 0.08, r 2  = 0.97) and voxel level (K 1: y = 1.22x - 0.30, r 2  = 0.90 and y = 1.26x + 0.00, r 2  = 0.92). Regional distribution of kinetic parametric images (αK 1, K 1, k 2, V a) was physiologically relevant. LLS and BFM showed more robust characteristics than NLS in the simulation. CONCLUSIONS: Fast kinetics and highly specific uptake of 18F-FPTP by myocardium enabled quantitative analysis with the 2C2P model using only the initial 10 min of data. LLS and BFM were feasible for estimating voxel-wise parameters. These two methods will be useful for quantitative evaluation of 18F-FPTP distribution in myocardium and in further studies with different conditions, disease models, and species.


Subject(s)
Heart/diagnostic imaging , Image Processing, Computer-Assisted , Phosphines , Positron Emission Tomography Computed Tomography , Algorithms , Humans , Kinetics , Models, Biological , Phosphines/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...