Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
2.
Nutr Res Pract ; 16(5): 577-588, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36238377

ABSTRACT

BACKGROUND/OBJECTIVES: Poorly regulated inflammation is believed to be the most predominant factor that can result in a wide scope of diseases including atopic dermatitis (AD). Despite many studies on the effect of pear pomace in obesity-related disorders including dysregulated gut microbiota, the protective effect of pear pomace in AD is still unknown. This study aimed to evaluate the effect of pear pomace ethanol extract (PPE) on AD by inhibiting inflammation. MATERIALS/METHODS: In the in vivo experiment, 2, 4-dinitrochlorobenzene (DNCB) was applied to NC/Nga mice to induce AD-like skin lesions. After the induction, PPE was administered daily by oral gavage for 4 weeks. The clinical severity score, serum IgE levels, spleen weight, histological changes in dorsal skin, and inflammation-related proteins were measured. In the cell study, RAW 264.7 cells were pretreated with PPE before stimulation with lipopolysaccharide (LPS). Nitrite oxide (NO) production and nuclear factor kappa B (NF-kB) protein expression were detected. RESULTS: Compared to the AD control (AD-C) group, IgE levels were dramatically decreased via PPE treatment. PPE significantly reduced scratching behavior, improved skin symptoms, and decreased ear thickness compared to the AD-C group. In addition, PPE inhibited the DNCB-induced expression of inducible nitrite oxide synthase (iNOS), the receptor for advanced glycation end products, extracellular signal-regulated kinase (ERK) 1/2, and NF-κB. PPE inhibited the LPS-induced overproduction of NO and the enhanced expression of iNOS and cyclooxygenase-2. Moreover, the phosphorylation of ERK1/2 and NF-κB in RAW 264.7 cells was suppressed by PPE. CONCLUSIONS: These results suggest that PPE could be explored as a therapeutic agent to prevent AD.

3.
Clin Respir J ; 16(11): 756-767, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36205104

ABSTRACT

INTRODUCTION: Macrolide-resistant Mycoplasma pneumoniae (MRMP) has become prevalent in children. This study investigated the clinical and laboratory variables of MRMP and macrolide-sensitive M. pneumoniae (MSMP) and identified factors associated with prolonged hospital admission in children. METHODS: A prospective multicenter study was conducted in 1063 children <18 years old in July 2018-June 2020. The 454 had a positive M. pneumoniae polymerase chain reaction assay. RESULTS: Most subjects had MRMP (78.4%), and all mutated strains had the A2063G transition. We defined MRMP* (n = 285) as MRMP pneumonia requiring admission and MSMP* (n = 72) as MSMP pneumonia requiring admission. Patients with MRMP pneumonia were older, more likely to have segmental/lobar pneumonia, and had more febrile days than those with MSMP pneumonia. C-reactive protein (CRP), lactate dehydrogenase (LDH), and percentage neutrophils were more strongly associated with MRMP* than MSMP* groups. Percentage neutrophils, CRP, and alanine aminotransferase significantly changed between admission and follow-up measurements in patients with MRMP* (P < 0.05). The duration of admission positively correlated with the number of febrile days after initiation of antibiotic medication and laboratory variables (white blood cell count, CRP, and aspartate aminotransferase [AST]) (P < 0.05). Random forest analysis indicated that the number of febrile days after initiation of antibiotic medication, AST, and percentage neutrophils at admission was over five. CONCLUSIONS: This study indicated that children with M. pneumoniae pneumonia with a higher number of febrile days after initiation of antibiotic medication, AST, and percentage neutrophils at admission were more likely to have prolonged admission duration.


Subject(s)
Mycoplasma pneumoniae , Pneumonia, Mycoplasma , Child , Humans , Adolescent , Mycoplasma pneumoniae/genetics , Prospective Studies , Drug Resistance, Bacterial , Pneumonia, Mycoplasma/drug therapy , Pneumonia, Mycoplasma/epidemiology , Macrolides/therapeutic use , Macrolides/pharmacology , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , C-Reactive Protein
4.
Nutrients ; 14(20)2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36296933

ABSTRACT

Although the red pepper and its seeds have been studied for metabolic diseases, the effects and potential mechanisms of red pepper seed extract (RPS) on hepatic lipid accumulation are not yet completely understood. This study aimed to evaluate the inhibitory effect of RPS on hepatic lipid accumulation via autophagy. C57BL/6 mice were fed a high-fat diet (HFD) or a HFD supplemented with RPS. RPS treatment inhibited hepatic lipid accumulation by suppressing lipogenesis, inducing hepatic autophagic flux, and activating AMPK in HFD-fed mice. To investigate the effect of RPS on an oleic acid (OA)-induced hepatic steatosis cell model, HepG2 cells were incubated in a high-glucose medium and OA, followed by RPS treatment. RPS treatment decreased OA-induced lipid accumulation and reduced the expression of lipogenesis-associated proteins. Autophagic flux dramatically increased in the RPS-treated group. RPS phosphorylated AMPK in a dose-dependent manner, thereby dephosphorylated mTOR. Autophagy inhibition with 3-methyladenine (3-MA) antagonized RPS-induced suppression of lipogenesis-related protein expressions. Moreover, the knockdown of endogenous AMPK also antagonized the RPS-induced regulation of lipid accumulation and autophagy. Our findings provide new insights into the beneficial effects of RPS on hepatic lipid accumulation through the AMPK-dependent autophagy-mediated downregulation of lipogenesis.


Subject(s)
Capsicum , Fatty Liver , Non-alcoholic Fatty Liver Disease , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Lipid Metabolism , Oleic Acid/pharmacology , Mice, Inbred C57BL , Liver/metabolism , Autophagy , Fatty Liver/metabolism , Diet, High-Fat/adverse effects , TOR Serine-Threonine Kinases/metabolism , Plant Extracts/pharmacology , Plant Extracts/metabolism , Glucose/metabolism , Seeds/metabolism , Non-alcoholic Fatty Liver Disease/metabolism
5.
Pharmaceutics ; 14(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35745792

ABSTRACT

We aimed to develop nafamostat mesylate immediate-release tablets for the treatment of COVID-19 through drug repositioning studies of nafamostat mesylate injection. Nafamostat mesylate is a serine protease inhibitor known to inhibit the activity of the transmembrane protease, serine 2 enzyme that affects the penetration of the COVID-19 virus, thereby preventing the binding of the angiotensin-converting enzyme 2 receptor in vivo and the spike protein of the COVID-19 virus. The formulation was selected through a stability study after manufacturing by a wet granulation process and a direct tableting process to develop a stable nafamostat mesylate immediate-release tablet. Formulation issues for the selected processes were addressed using the design of experiments and quality-by-design approaches. The dissolution rate of the developed tablet was confirmed to be >90% within 30 min in the four major dissolutions, except in the pH 6.8 dissolution medium. Additionally, an in vivo pharmacokinetic study was performed in monkeys, and the pharmacokinetic profiles of nafamostat injections, oral solutions, and tablets were compared. The half-life during oral administration was confirmed to be significantly longer than the reported literature value of 8 min, and the bioavailability of the tablet was approximately 25% higher than that of the oral solution.

6.
Front Pediatr ; 10: 877759, 2022.
Article in English | MEDLINE | ID: mdl-35498812

ABSTRACT

Background: Human coronaviruses (HCoVs) are associated with upper respiratory tract infections. Although studies have analyzed the clinical and epidemiological characteristics of HCoV-associated infections, no multi-center studies have been conducted in Korean children. We aimed to describe the epidemiology and clinical characteristics of HCoV-associated infection in children. Methods: We retrospectively reviewed medical records of children in whom HCoVs were detected using multiplex reverse transcriptase-polymerase chain reaction amplification in five centers from January 2015 to December 2019. Results: Overall, 1,096 patients were enrolled. Among them, 654 (59.7%) patients were male. The median age was 1 year [interquartile range (IQR), 0-2 years]. HCoVs were identified mainly in winter (55.9%). HCoV-229E, HCoV-OC43, and HCoOV-NL63 were detected mainly in winter (70.9, 55.8, and 57.4%, respectively), but HCoV-HKU1 was mainly identified in spring (69.7%). HCoV-OC43 (66.0%) was detected most frequently, followed by HCoV-NL63 (33.3%), and HCoV-229E (7.7%). Two different types of HCoVs were co-detected in 18 samples, namely. Alphacoronavirus-betacoronavirus co-infection (n = 13) and, alphacoronavirus-alphacoronavirus co-infection (n = 5). No betacoronavirus-betacoronavirus co-infection was detected. Patients were diagnosed with upper respiratory tract infection (41.4%), pneumonia (16.6%), acute bronchiolitis (15.5%), non-specific febrile illness (13.1%), croup (7.3%), and acute gastroenteritis (5.1%). There were 832 (75.9%) hospitalized patients with a median duration of hospitalization of 4 days (IQR, 3-5 days); 108 (9.9%) patients needed supplemental oxygen with 37 (3.4%) needing high-flow nasal cannula or mechanical ventilation. There were no deaths. Conclusion: HCoV-associated infections exhibit marked seasonality with peaks in winter. Patients with lower respiratory tract infection, a history of prematurity, or underlying chronic diseases may progress to a severe course and may need oxygen therapy.

7.
Biomedicines ; 9(12)2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34944767

ABSTRACT

Drug-induced cardiotoxicity reduces the success rates of drug development. Thus, the limitations of current evaluation methods must be addressed. Human cardiac organoids (hCOs) derived from induced pluripotent stem cells (hiPSCs) are useful as an advanced drug-testing model; they demonstrate similar electrophysiological functionality and drug reactivity as the heart. How-ever, similar to other organoid models, they have immature characteristics compared to adult hearts, and exhibit batch-to-batch variation. As the cell cycle is important for the mesodermal differentiation of stem cells, we examined the effect of ZM447439, an aurora kinase inhibitor that regulates the cell cycle, on cardiogenic differentiation. We determined the optimal concentration and timing of ZM447439 for the differentiation of hCOs from hiPSCs and developed a novel protocol for efficiently and reproducibly generating beating hCOs with improved electrophysiological functionality, contractility, and yield. We validated their maturity through electro-physiological- and image-based functional assays and gene profiling with next-generation sequencing, and then applied these cells to multi-electrode array platforms to monitor the cardio-toxicity of drugs related to cardiac arrhythmia; the results confirmed the drug reactivity of hCOs. These findings may enable determination of the regulatory mechanism of cell cycles underlying the generation of iPSC-derived hCOs, providing a valuable drug testing platform.

8.
J Vet Sci ; 21(5): e75, 2020 Sep.
Article in English | MEDLINE | ID: mdl-33016021

ABSTRACT

BACKGROUND: Dental diseases are common in dogs and cats, and accurate measurements of dentoalveolar structure are important for planning of treatment. The information that the comparison computed tomography (CT) with dental radiography (DTR) is not yet reported in veterinary medicine. OBJECTIVES: The purpose of this study was to compare the DTR with CT of dentoalveolar structures in healthy dogs and cats, and to evaluate the CT images of 2 different slice thicknesses (0.5 and 1.0 mm). METHODS: We included 6 dogs (2 Maltese and 1 Spitz, Beagle, Pomeranian, mixed, 1 to 8 years, 4 castrated males, and 2 spayed female) and 6 cats (6 domestic short hair,8 months to 3 years, 4 castrated male and 2 spayed female) in this study. We measured the pulp cavity to tooth width ratio (P/T ratio) and periodontal space of maxillary and mandibular canine teeth, maxillary fourth premolar, mandibular first molar, maxillary third premolar and mandibular fourth premolar. RESULTS: P/T ratio and periodontal space in the overall dentition of both dogs and cats were smaller in DTR compared to CT. In addition, CT images at 1.0 mm slice thickness was generally measured to be greater than the images at 0.5 mm slice thickness. CONCLUSIONS: The results indicate that CT with thin slice thickness provides more accurate information on the dentoalveolar structures. Additional DTR, therefore, may not be required for evaluating dental structure in small-sized dogs and cats.


Subject(s)
Cats/anatomy & histology , Dogs/anatomy & histology , Radiography, Dental/veterinary , Tomography, X-Ray Computed/veterinary , Tooth Socket/diagnostic imaging , Animals , Female , Male
9.
Nutrients ; 12(10)2020 Oct 17.
Article in English | MEDLINE | ID: mdl-33080824

ABSTRACT

The rational regulation of programmed cell death by means of autophagy and apoptosis has been considered a potential treatment strategy for cancer. We demonstrated the inhibitory effect of St. John's Wort (SJW) on growth in the triple-negative breast cancer (TNBC) cell line and xenografted mice and its target mechanism concerning autophagic and apoptotic cell death. SJW ethanol extract (SJWE) inhibited proliferation in a dose-dependent manner. SJWE treatment dramatically increased autophagy flux and apoptosis compared with the control. The autophagy inhibitor, 3-methyladenine (3-MA), reversed the SJWE-induced inhibition of cell proliferation and regulation of autophagy and apoptosis, indicating that SJWE induced apoptosis through prodeath autophagy. Furthermore, SJWE inhibited tumor growth and induced autophagy and apoptosis in the tumor of MDA-MB-231 xenografted athymic nude mice. Our results indicate that SJWE might have great potential as a new anticancer therapy for triple-negative breast cancer by inducing prodeath autophagy and apoptosis.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis/drug effects , Autophagy/drug effects , Hypericum/chemistry , Phytotherapy , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/pathology , Xenograft Model Antitumor Assays , Adenine/analogs & derivatives , Adenine/pharmacology , Animals , Dose-Response Relationship, Drug , Mice, Nude , Neoplasm Transplantation , Plant Extracts/isolation & purification , Tumor Cells, Cultured
10.
Food Sci Biotechnol ; 29(2): 275-281, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32064136

ABSTRACT

In this study, the protective effect of red pepper seed water extract (RPS) against the obesity in high fat diet (HFD)-fed mice was investigated (HFD control group, and HFD group treated with 100 or 200 mg/kg body weight of RPS for 13 weeks). The application of RPS partially reversed the HFD-induced increases in body weight and adipose tissue weight. The patterns of the adipose tissue weights were parallel to the patterns of fat area, as measured in DXA procedure. In the adipose tissue, RPS suppressed the expression of adipogenic transcription factors and adipose marker genes. AMP-activated protein kinase activation was observed in the adipose tissue by RPS treatment. In addition, RPS improved high homeostasis model assessment of insulin resistance and hyperlipidemia in HFD fed mice. These findings suggest that RPS can be used as a potential therapeutic substance for reducing body fat and obesity related diseases.

11.
RSC Adv ; 10(18): 10519-10525, 2020 Mar 11.
Article in English | MEDLINE | ID: mdl-35492898

ABSTRACT

Tin oxide (SnO2) has been attractive as an alternative to carbon-based anode materials because of its fairly high theoretical capacity during cycling. However, SnO2 has critical drawbacks, such as poor cycle stability caused by a large volumetric variation during the alloying/de-alloying reaction and low capacity at a high current density due to its low electrical conductivity. In this study, we synthesized a porous SnO2 nanostructure (n-SnO2) that has a high specific surface area as an anode active material using the Adams fusion method. From the Brunauer-Emmett-Teller analysis and transmission electron microscopy, the as-prepared SnO2 sample was found to have a mesoporous structure with a fairly high surface area of 122 m2 g-1 consisting of highly-crystalline nanoparticles with an average particle size of 5.5 nm. Compared to a commercial SnO2, n-SnO2 showed significantly improved electrochemical performance because of its increased specific surface area and short Li+ ion pathway. Furthermore, during 50 cycles at a high current density of 800 mA g-1, n-SnO2 exhibited a high initial capacity of 1024 mA h g-1 and enhanced retention of 53.6% compared to c-SnO2 (496 mA h g-1 and 23.5%).

12.
RSC Adv ; 10(32): 19077-19082, 2020 May 14.
Article in English | MEDLINE | ID: mdl-35518332

ABSTRACT

Molybdenum disulfide (MoS2) is attractive as an anode material for next-generation batteries, because of its layered structure being favorable for the insertion/deinsertion of Li+ ions, and its fairly high theoretical capacity. However, since the MoS2 anode material has exhibited disadvantages, such as low electrical conductivity and poor cycling stability, to improve the electrochemical performance of MoS2 in this study, a nanocomposite structure consisting of MoS2 and GNS (MoS2/GNS) as an anode for LIBs was prepared, by controlling the weight ratios of MoS2/GNS. The X-ray diffraction patterns and electron microscopic analysis showed that the nanocomposite electrode structure consisted of well-formed MoS2 nanoparticles and GNS. Compared to MoS2-only, the MoS2/GNS composites exhibited high retention and improved capacity at high current densities. In particular, among these nanocomposite samples, MoS2/GNS(8 : 2) with an appropriate portion of GNS exhibited the best LIB performance, due to the lowest interfacial resistance and highest Li-ion diffusivity.

13.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-823934

ABSTRACT

Objective: To explore the inhibitory effect of water extract from pear pomace on abdominal fat accumulation and its underlying mechanism in high fat diet-fed animals. Methods: Three groups of male C57BL/6J mice were fed with a 60% kcal fat diet for 8 weeks. Pear pomace water extract (200 or 400 mg/kg body weight) was administered once daily via oral gavage. To confirm the possibility of the water extract of pear pomace acting as an activator of adenosine 5'-monophosphate-activated protein kinase (AMPK), differentiation of 3T3-L1 preadipocytes was induced in the presence of the water extract of pear pomace with or without compound C. Body weight, food efficacy ratio, insulin resistance, and adipogenic protein expression were measured. Moreover, in the 3T3-L1 cells, lipid content and lipogenesis-related proteins were measured using Oil Red O staining and Western blotting analysis. Results: Body weight gain and total abdominal fat weight were reduced in mice treated with pear pomace water extract. Pear pomace water extract reduced fasting blood glucose and insulin, thereby reducing the homeostatic model assessment of insulin resistance. It also resulted in dose-dependent decreases in triglyceride, total cholesterol, and low-density lipoprotein-cholesterol. The protein expression of p-AMPK increased, while the expression of AMPK-downstream proteins including PPAR-γ, C/EBPα, SREBP-1c, ACC, and FAS decreased in the adipose tissue of mice treated with pear pomace water extract. Furthermore, the inhibition of AMPK by compound C blocked pear pomace water extract-induced reduction of lipid content and the expression of lipogenesis-related genes. Conclusions: Pear pomace water extract prevents fat accumulation both in vivo and in vitro by activating AMPK.

14.
Nanoscale ; 11(37): 17415-17424, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31528931

ABSTRACT

Germanium (Ge) as an alternative to graphite exhibits a fairly high theoretical energy density and improved Li+ ion diffusivity. However, the seriously deteriorated electrochemical performance of Ge during cycling and the difficulty in the preparation of Ge-based nanostructures can hinder the utilization of Ge as an anode. Thus, in this study, a nanocomposite structure with Ge and TiO2 (Ge/TiO2) was synthesized using a facile one-pot method with different ratios of a Ge source with a dominant GeO2 phase and titanium isopropoxide. From X-ray diffraction, electron microscopy, and X-ray photoelectron spectroscopy, the Ge/TiO2 nanocomposites were found to be spherical structures homogeneously consisting of the reduced Ge as an active material and amorphous TiO2 as a matrix. In particular, the Ge/TiO2 nanocomposite with an appropriate amount of TiO2 exhibited improved electrochemical properties, i.e., a coulombic efficiency of 97% and a retention of 61% for 100 cycles, compared to commercial Ge (a coulombic efficiency of 82% and a retention of 16%). This demonstrates that the amorphous TiO2 matrix could relieve a volumetric expansion of the Ge active material in the nanocomposite electrode generated during the cycling process.

15.
Korean J Physiol Pharmacol ; 23(5): 393-402, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31496876

ABSTRACT

Aurora kinases inhibitors, including ZM447439 (ZM), which suppress cell division, have attracted a great deal of attention as potential novel anti-cancer drugs. Several recent studies have confirmed the anti-cancer effects of ZM in various cancer cell lines. However, there have been no studies regarding the cardiac safety of this agent. We performed several cytotoxicity, invasion and migration assays to examine the anti-cancer effects of ZM. To evaluate the potential effects of ZM on cardiac repolarisation, whole-cell patch-clamp experiments were performed with human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and cells with heterogeneous cardiac ion channel expression. We also conducted a contractility assay with rat ventricular myocytes to determine the effects of ZM on myocardial contraction and/or relaxation. In tests to determine in vitro efficacy, ZM inhibited the proliferation of A549, H1299 (lung cancer), MCF-7 (breast cancer) and HepG2 (hepatoma) cell lines with IC50 in the submicromolar range, and attenuated the invasive and metastatic capacity of A549 cells. In cardiac toxicity testing, ZM did not significantly affect I Na, I Ks or I K1, but decreased I hERG in a dose-dependent manner (IC50: 6.53 µM). In action potential (AP) assay using hiPSC-CMs, ZM did not induce any changes in AP parameters up to 3 µM, but it at 10 µM induced prolongation of AP duration. In summary, ZM showed potent broad-spectrum anti-tumor activity, but relatively low levels of cardiac side effects compared to the effective doses to tumor. Therefore, ZM has a potential to be a candidate as an anti-cancer with low cardiac toxicity.

16.
Phytother Res ; 33(10): 2765-2774, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31385371

ABSTRACT

The purpose of this study was to evaluate the pancreatic beta cell protective and glucose uptake enhancing effect of the water extract of Tinospora cordifolia stem (TCSE) by using rat insulinoma (RIN)-m5F cells and 3 T3-L1 adipocytes. RIN-m5F cells were stimulated with interleukin-1ß and interferon-γ, and the effect of TCSE on insulin secretion and cytokine-induced toxicity was measured by ELISA and MTT assay, respectively. The glucose uptake and protein expression were measured by fluorometry and western blotting. Antidiabetic effect of TCSE was measured using streptozotocin-induced diabetic rats. TCSE dose dependently increased cell viability and insulin secretion in RIN-m5F cells. In addition, TCSE increased both the glucose uptake and glucose transporter 4 translocation in 3 T3-L1 adipocytes via PI3K pathway. Finally, TCSE significantly lowered blood glucose and diet intake and increased body weight in streptozotocin-induced diabetic rats. The level of serum insulin and hepatic glycogen was increased, whereas the level of serum triglyceride, total cholesterol, dipeptidyl peptidase-4, and thiobarbituric acid reactive substances was decreased in TCSE-administered rats. TCSE also increased glucose transporter 4 protein expression in the adipose tissue and liver of TCSE-fed diabetic rats. Our results suggested that TCSE preserved RIN-m5F cells from cytokine-induced toxicity and enhanced glucose uptake in 3 T3-L1 adipocytes, which may regulate glucose metabolism in diabetic rats.


Subject(s)
Adipocytes/drug effects , Diabetes Mellitus, Experimental/drug therapy , Glucose/metabolism , Insulin-Secreting Cells/drug effects , Plant Extracts/pharmacology , Tinospora , Adipocytes/metabolism , Animals , Cells, Cultured , Diabetes Mellitus, Experimental/metabolism , Male , Plant Extracts/therapeutic use , Rats , Rats, Wistar , Streptozocin
17.
Intest Res ; 17(1): 144-148, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30317857

ABSTRACT

The incidence of inflammatory bowel disease (IBD) is rapidly increasing worldwide. Indigo naturalis is known to have an antiinflammatory effect. Indigo naturalis has been traditionally used in the treatment of IBD in China and Japan. Currently, it is used as a primary or adjunctive drug in patients with ulcerative colitis. There are some reports of the effects of indigo naturalis when used in patients with ulcerative colitis. However, its usage has been associated with adverse events, including liver dysfunction, headache, gastrointestinal disturbance, and pulmonary hypertension. Pancreatitis as an adverse event during treatment using indigo naturalis has not yet been reported. We report a case of recurrent events of pancreatitis that occurred briefly after starting medication with indigo naturalis in a child with severe Crohn's disease. The pancreatitis improved after indigo naturalis was discontinued in 2 events. This is the first case to report the association between pancreatitis and indigo naturalis in the English literature.

18.
Nutr Res Pract ; 12(6): 494-502, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30515277

ABSTRACT

BACKGROUND/OBJECTIVES: Reducing the number of adipocytes by inducing apoptosis of mature adipocytes as well as suppressing differentiation of preadipocytes plays an important role in preventing obesity. This study examines the anti-adipogenic and pro-apoptotic effect of red pepper seed water extract (RPS) prepared at 4℃ (RPS4) in 3T3-L1 cells. MATERIALS/METHODS: Effect of RPS4 or its fractions on lipid accumulation was determined in 3T3-L1 cells using oil red O (ORO) staining. The expressions of AMP-activated protein kinase (AMPK) and adipogenic associated proteins [peroxisome proliferator-activated receptor-γ (PPAR-γ), CCAAT/enhancer-binding proteins α (C/EBP α), sterol regulatory element binding protein-1c (SREBP-1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC)] were measured in 3T3-L1 cells treated with RPS4. Apoptosis and the expression of Akt and Bcl-2 family proteins [B-cell lymphoma 2 (Bcl-2), Bcl-2-associated death promoter (Bad), Bcl-2 like protein 4 (Bax), Bal-2 homologous antagonist/killer (Bak)] were measured in mature 3T3-L1 cells treated with RPS4. RESULTS: Treatment of RPS4 (0-75 µg/mL) or its fractions (0-50 µg/mL) for 24 h did not have an apparent cytotoxicity on pre and mature 3T3-L1 cells. RPS4 significantly suppressed differentiation and cellular lipid accumulation by increasing the phosphorylation of AMPK and reducing the expression of PPAR-γ, C/EBP α, SREBP-1c, FAS, and ACC. In addition, all fractions except ethyl acetate fraction significantly suppressed cellular lipid accumulation. RPS4 induced the apoptosis of mature adipocytes by hypophosphorylating Akt, increasing the expression of the pro-apoptotic proteins, Bak, Bax, and Bad, and reducing the expression of the anti-apoptotic proteins, Bcl-2 and p-Bad. CONCLUSIONS: These finding suggest that RPS4 can reduce the numbers as well as the size of adipocytes and might useful for preventing and treating obesity.

19.
Int J Mol Sci ; 19(4)2018 Mar 23.
Article in English | MEDLINE | ID: mdl-29570671

ABSTRACT

St. John's Wort (SJW) has been used as an estrogen agonist in the systems affected by menopause. Also, hypericin, a bioactive compound of SJW, has been used as a photosensitizer in photodynamic therapy. In the present study, we investigate the anti-proliferative and pro-apoptotic effects of SJW to demonstrate the chemo-preventive effect in human breast cancer cells. MCF-7 cells were cultured with DMSO or various concentrations of SJW ethanol extract (SJWE). Cell viability, proliferation, apoptosis, the expression of proteins involved in cell growth and apoptosis, and caspase-3/7 activity were examined. SJWE dose-dependently suppressed cell growth and induced apoptosis of MCF-7 cells. Mechanistically, SJWE enhanced the phosphorylation of AMP-activated protein kinase (AMPK) and decreased the expression of p-mammalian target of rapamycin (p-mTOR) and p-eukaryotic translation initiation factor 4E (eIF4E)-binding protein 1 (4E-BP1). Also, SJWE inhibited the phosphorylation of protein kinase B (Akt) and showed increases in the expression of pro-apoptotic proteins Bax and Bad with decreases in the expression of anti-apoptotic proteins including B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), and p-Bcl-2-associated death promoter (p-Bad). SJWE at 50 µg/mL showed markedly enhanced caspase-7 activation. Taken together, our results provide evidence that SJWE shows anti-proliferative and pro-apoptotic effects via inhibition of AMPK/mTOR and activation of a mitochondrial pathway. Therefore, SJWE can be used as a chemo-preventive agent without photo-activation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Breast Neoplasms/metabolism , TOR Serine-Threonine Kinases/metabolism , Anthracenes , Cell Line, Tumor , Humans , Hypericum/chemistry , MCF-7 Cells , Perylene/analogs & derivatives , Perylene/pharmacology , Signal Transduction/drug effects
20.
Am J Chin Med ; 46(1): 107-118, 2018.
Article in English | MEDLINE | ID: mdl-29316805

ABSTRACT

Obesity is the main risk factor for metabolic syndromes and there has been an upsurge in demand for effective therapeutic strategies. This study investigated the effect of red pepper seed water extract (RPS) on the process of differentiation in 3T3-L1 adipocytes. RPS treatment significantly suppressed cellular lipid accumulation and reduced the expression of adipocytes-associated proteins, peroxisome proliferator-activated receptor-[Formula: see text] (PPAR-[Formula: see text]), CCAAT/enhancer-binding proteins [Formula: see text] (C/EBP [Formula: see text]), sterol regulatory element binding protein-1c (SREBP-1c), as well as fatty acid synthase (FAS), and fatty acid binding protein 4 (FABP4). The inhibitory effect of RPS on differentiation was mainly through the modulation of the C/EBP [Formula: see text] and C/EBP [Formula: see text] expression at the early phase of differentiation. Moreover, at the early phase of differentiation, RPS markedly increased the phosphorylation of AMP-activated protein kinase (AMPK). Such enhancing effect of RPS was abolished in the presence of compound C. Our results suggest that activation of AMPK at early stage of adipogenesis is involved in the anti-adipogenesis effect of RPS.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Adipocytes/cytology , Adipogenesis/genetics , Capsicum/chemistry , Cell Differentiation/drug effects , Plant Extracts/pharmacology , 3T3-L1 Cells , Animals , CCAAT-Enhancer-Binding Proteins/metabolism , Cell Differentiation/genetics , Fatty Acid-Binding Proteins/metabolism , Gene Expression/drug effects , Lipid Metabolism/drug effects , Mice , PPAR gamma/metabolism , Phosphorylation/drug effects , Sterol Regulatory Element Binding Protein 1/metabolism , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...