Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 1318, 2021 01 14.
Article in English | MEDLINE | ID: mdl-33446672

ABSTRACT

This study aimed to elaborate upon prior findings suggestive of the altered lateralization of structural connectivity in the developing preterm brain by using diffusion tensor imaging tractography to explore how network topological asymmetries in fronto-limbic neural circuitry are altered at 36-41 weeks, postmenstrual age in 64 preterm infants without severe brain injury and 33 term-born infants. We compared the pattern of structural connectivity and network lateralization of the betweenness centrality in the medial fronto-orbital gyrus, superior temporal gyrus, amygdala, and hippocampus-the structures comprising the fronto-limbic brain circuit-between preterm and term infants. Global efficiency, local efficiency, and small-world characteristics did not differ significantly between the two hemispheres in term-born infants, suggesting that integration and segregation are balanced between the left and right hemispheres. However, the preterm brain showed significantly greater leftward lateralization of small-worldness (P = 0.033); the lateralization index of the betweenness centrality revealed that the medial fronto-orbital gyrus (P = 0.008), superior temporal gyrus (P = 0.031), and hippocampus (P = 0.028) showed significantly increased leftward asymmetry in preterm infants relative to term-infants independent of sex, age at imaging, and bronchopulmonary dysplasia. The altered lateralization of fronto-limbic brain circuitry might be involved in the early development of social-emotional disorders in preterm infants.


Subject(s)
Brain , Diffusion Tensor Imaging , Infant, Premature , Neural Pathways , Brain/diagnostic imaging , Brain/physiopathology , Female , Humans , Infant, Newborn , Male , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology
2.
Ital J Pediatr ; 46(1): 43, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32272955

ABSTRACT

BACKGROUND: Preterm infants are at risk for structural disruption of brain connectivity due to perinatal complications encountered during the fetal and neonatal periods. This study aimed to investigate the development of connectivity using diffusion tensor imaging at near-term age and the effect of grade 1 intraventricular hemorrhage on it. METHODS: A total of 86 infants (55 preterm infants, 24 full-term infants) without apparent brain injury underwent diffusion magnetic resonance imaging (MRI) between 36 and 41 weeks post-menstrual age. The diffusion-MRI based connectomics were constructed from 64-segmented regions by using the Johns Hopkins University neonate atlas and were weighted with fractional anisotropy. The connectomes were quantified in the structural networks and investigated using network metrics, such as the clustering coefficient, local efficiency, characteristic path length, global efficiency, and small-worldness. We compared the differences in the brain networks of preterm infants with or without grade 1 intraventricular hemorrhage in binary and fractional anisotropy-weighted (wFA) connectomes. RESULTS: The 55 preterm infants had a mean gestational age at birth of 29.3 ± 4.1 weeks and the 24 term-born infants, 38.1 ± 1.1 weeks. A total of 13 of the 55 preterm infants (23.6%) were diagnosed with grade 1 intraventricular hemorrhage. The development of connectivity of the brain network in preterm infants without intraventricular hemorrhage was comparable at near-term age to that in term infants. The preterm infants with germinal matrix hemorrhage exhibited higher clustering (0.093 ± 0.015 vs. 0.088 ± 0.007, p = 0.027) and local efficiency (0.151 ± 0.022 vs. 0.141 ± 0.010, p = 0.025), implying the potential for segregation. However, the preterm infants with intraventricular hemorrhage revealed a longer path length (0.291 ± 0.035 vs. 0.275 ± 0.019, p = 0.020) and lower global efficiency (3.998 ± 0.473 vs. 4.212 ± 0.281, p = 0.048), indicating a decreased integration in the wFA connectivity matrix than those without germinal matrix hemorrhage, after correcting for gestational age, sex, bronchopulmonary dysplasia, and age at scan. CONCLUSION: Grade 1 intraventricular hemorrhage in preterm infants may enhance the capacity for local information transfer and the relative reinforcement of the segregation of networks at the expense of global integration capacity.


Subject(s)
Brain/growth & development , Brain/pathology , Cerebral Hemorrhage/pathology , Infant, Premature, Diseases/pathology , Age Factors , Brain/diagnostic imaging , Cerebral Hemorrhage/complications , Cerebral Hemorrhage/diagnostic imaging , Child Development , Cohort Studies , Diffusion Magnetic Resonance Imaging , Female , Humans , Infant , Infant, Newborn , Infant, Premature , Infant, Premature, Diseases/diagnostic imaging , Male
SELECTION OF CITATIONS
SEARCH DETAIL