Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Proteins ; 92(1): 52-59, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37596815

ABSTRACT

The core metabolic reactions of life drive electrons through a class of redox protein enzymes, the oxidoreductases. The energetics of electron flow is determined by the redox potentials of organic and inorganic cofactors as tuned by the protein environment. Understanding how protein structure affects oxidation-reduction energetics is crucial for studying metabolism, creating bioelectronic systems, and tracing the history of biological energy utilization on Earth. We constructed ProtReDox (https://protein-redox-potential.web.app), a manually curated database of experimentally determined redox potentials. With over 500 measurements, we can begin to identify how proteins modulate oxidation-reduction energetics across the tree of life. By mapping redox potentials onto networks of oxidoreductase fold evolution, we can infer the evolution of electron transfer energetics over deep time. ProtReDox is designed to include user-contributed submissions with the intention of making it a valuable resource for researchers in this field.


Subject(s)
Oxidoreductases , Oxidoreductases/chemistry , Oxidation-Reduction , Electron Transport
2.
J Am Chem Soc ; 140(36): 11210-11213, 2018 09 12.
Article in English | MEDLINE | ID: mdl-30141918

ABSTRACT

Ambidoxin is a designed, minimal dodecapeptide consisting of alternating L and D amino acids that binds a 4Fe-4S cluster through ligand-metal interactions and an extensive network of second-shell hydrogen bonds. The peptide can withstand hundreds of oxidation-reduction cycles at room temperature. Ambidoxin suggests how simple, prebiotic peptides may have achieved robust redox catalysis on the early Earth.


Subject(s)
Iron-Sulfur Proteins/chemistry , Electrochemical Techniques , Electron Transport , Ligands , Oxidation-Reduction
3.
Nat Microbiol ; 2: 17114, 2017 Jul 17.
Article in English | MEDLINE | ID: mdl-28714967

ABSTRACT

Many bacteria, including Legionella pneumophila, rely on the type IV secretion system to translocate a repertoire of effector proteins into the hosts for their survival and growth. Type IV coupling protein (T4CP) is a hexameric ATPase that links translocating substrates to the transenvelope secretion conduit. Yet, how a large number of effector proteins are selectively recruited and processed by T4CPs remains enigmatic. DotL, the T4CP of L. pneumophila, contains an ATPase domain and a C-terminal extension whose function is unknown. Unlike T4CPs involved in plasmid DNA translocation, DotL appeared to function by forming a multiprotein complex with four other proteins. Here, we show that the C-terminal extension of DotL interacts with DotN, IcmS, IcmW and an additionally identified subunit LvgA, and that this pentameric assembly binds Legionella effector proteins. We determined the crystal structure of this assembly and built an architecture of the T4CP holocomplex by combining a homology model of the ATPase domain of DotL. The holocomplex is a hexamer of a bipartite structure composed of a membrane-proximal ATPase domain and a membrane-distal substrate-recognition assembly. The presented information demonstrates the architecture and functional dissection of the multiprotein T4CP complexes and provides important insights into their substrate recruitment and processing.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Legionella pneumophila/chemistry , Multiprotein Complexes/chemistry , Type IV Secretion Systems/chemistry , Bacterial Proteins/genetics , Crystallography, X-Ray , Gene Expression Regulation, Bacterial , Legionella pneumophila/genetics , Legionella pneumophila/metabolism , Models, Molecular , Multiprotein Complexes/metabolism , Protein Domains , Type IV Secretion Systems/genetics , Type IV Secretion Systems/metabolism
4.
J Am Chem Soc ; 139(25): 8562-8569, 2017 06 28.
Article in English | MEDLINE | ID: mdl-28590728

ABSTRACT

We herein show the chiral recognition and separation of aspartic acid (Asp) enantiomers by achiral brushite due to the asymmetries of their dynamical steps in its nonequilibrium states. Growing brushite has a higher adsorption affinity to d-Asp, while l-Asp is predominant on the dissolving brushite surface. Microstructural characterization reveals that chiral selection is mainly attributed to brushite [101] steps, which exhibit two different configurations during crystal growth and dissolution, respectively, with each preferring a distinct enantiomer due to this asymmetry. Because these transition step configurations have different stabilities, they subsequently result in asymmetric adsorption. By varying free energy barriers through solution thermodynamic driving force (i.e., supersaturation), the dominant nonequilibrium intermediate states can be switched and chiral selection regulated. This finding highlights that the dynamic steps can be vital for chiral selection, which may provide a potential pathway for chirality generation through the dynamic nature.


Subject(s)
Aspartic Acid/chemistry , Calcium Phosphates/chemistry , Thermodynamics , Computer Simulation , Microscopy, Atomic Force , Stereoisomerism
5.
Philos Trans R Soc Lond B Biol Sci ; 368(1622): 20120257, 2013 Jul 19.
Article in English | MEDLINE | ID: mdl-23754810

ABSTRACT

Oxidoreductases play a central role in catalysing enzymatic electron-transfer reactions across the tree of life. To first order, the equilibrium thermodynamic properties of these proteins are governed by protein folds associated with specific transition metals and ligands at the active site. A global analysis of holoenzyme structures and functions suggests that there are fewer than approximately 500 fundamental oxidoreductases, which can be further clustered into 35 unique groups. These catalysts evolved in prokaryotes early in the Earth's history and are largely responsible for the emergence of non-equilibrium biogeochemical cycles on the planet's surface. Although the evolutionary history of the amino acid sequences in the oxidoreductases is very difficult to reconstruct due to gene duplication and horizontal gene transfer, the evolution of the folds in the catalytic sites can potentially be used to infer the history of these enzymes. Using a novel, yet simple analysis of the secondary structures associated with the ligands in oxidoreductases, we developed a structural phylogeny of these enzymes. The results of this 'composome' analysis suggest an early split from a basal set of a small group of proteins dominated by loop structures into two families of oxidoreductases, one dominated by α-helices and the second by ß-sheets. The structural evolutionary patterns in both clades trace redox gradients and increased hydrogen bond energy in the active sites. The overall pattern suggests that the evolution of the oxidoreductases led to decreased entropy in the transition metal folds over approximately 2.5 billion years, allowing the enzymes to use increasingly oxidized substrates with high specificity.


Subject(s)
Biological Evolution , Metals/metabolism , Oxidoreductases/metabolism , Amino Acid Sequence , Animals , Binding Sites , Ecological and Environmental Phenomena , Metals/chemistry , Oceans and Seas , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Protein Binding , Protein Conformation , Protein Folding
6.
Curr Biol ; 23(12): 1126-31, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23746634

ABSTRACT

Biomineralization is a widely dispersed and highly regulated but poorly understood process by which organisms precipitate minerals from a wide variety of elements [1]. For many years, it has been hypothesized that the biological precipitation of carbonates is catalyzed by and organized on an extracellular organic matrix containing a suite of proteins, lipids, and polysaccharides [2, 3]. The structures of these molecules, their evolutionary history, and the biophysical mechanisms responsible for calcification remain enigmatic. Despite the recognition that mineralized tissues contain proteins that are unusually rich in aspartic and glutamic acids [4-6], the role of these proteins in biomineralization remains elusive [5, 6]. Here we report, for the first time, the identification, cloning, amino acid sequence, and characterization of four highly acidic proteins, derived from expression of genes obtained from the common stony coral, Stylophora pistillata. Each of these four proteins can spontaneously catalyze the precipitation of calcium carbonate in vitro. Our results demonstrate that coral acid-rich proteins (CARPs) not only bind Ca(2+) stoichiometrically but also precipitate aragonite in vitro in seawater at pH 8.2 and 7.6, via an electrostatic interaction with protons on bicarbonate anions. Phylogenetic analysis suggests that at least one of the CARPs arose from a gene fusion. Similar, highly acidic proteins appear to have evolved several times independently in metazoans through convergence. Based purely on thermodynamic grounds, the predicted change in surface ocean pH in the next decades would appear to have minimal effect on the capacity of these acid-rich proteins to precipitate carbonates.


Subject(s)
Anthozoa/metabolism , Calcification, Physiologic , Calcium Carbonate/metabolism , Proteins/metabolism , Amino Acid Sequence , Animals , Anthozoa/cytology , Anthozoa/genetics , Calcium Carbonate/chemistry , Cloning, Molecular , Extracellular Matrix/metabolism , Molecular Sequence Data , Phylogeny , Proteins/classification , Proteins/genetics , Sequence Alignment
7.
Proc Natl Acad Sci U S A ; 110(25): 10073-7, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23733945

ABSTRACT

Photochemical reactions of minerals are underappreciated processes that can make or break chemical bonds. We report the photooxidation of siderite (FeCO3) by UV radiation to produce hydrogen gas and iron oxides via a two-photon reaction. The calculated quantum yield for the reaction suggests photooxidation of siderite would have been a significant source of molecular hydrogen for the first half of Earth's history. Further, experimental results indicate this abiotic, photochemical process may have led to the formation of iron oxides under anoxic conditions. The reaction would have continued through the Archean to at least the early phases of the Great Oxidation Event, and provided a mechanism for oxidizing the atmosphere through the loss of hydrogen to space, while simultaneously providing a key reductant for microbial metabolism. We propose that the photochemistry of Earth-abundant minerals with wide band gaps would have potentially played a critical role in shaping the biogeochemical evolution of early Earth.


Subject(s)
Carbonates/chemistry , Earth, Planet , Evolution, Planetary , Exobiology/methods , Ferric Compounds/chemistry , Hydrogen/chemistry , Anaerobiosis , Atmosphere/chemistry , Carbon Dioxide/chemistry , Models, Chemical , Oxidants, Photochemical/chemistry , Oxidation-Reduction , Photons , Ultraviolet Rays
8.
PLoS Comput Biol ; 8(4): e1002463, 2012.
Article in English | MEDLINE | ID: mdl-22496635

ABSTRACT

Models of early protein evolution posit the existence of short peptides that bound metals and ions and served as transporters, membranes or catalysts. The Cys-X-X-Cys-X-X-Cys heptapeptide located within bacterial ferredoxins, enclosing an Fe4S4 metal center, is an attractive candidate for such an early peptide. Ferredoxins are ancient proteins and the simple α+ß fold is found alone or as a domain in larger proteins throughout all three kingdoms of life. Previous analyses of the heptapeptide conformation in experimentally determined ferredoxin structures revealed a pervasive right-handed topology, despite the fact that the Fe4S4 cluster is achiral. Conformational enumeration of a model CGGCGGC heptapeptide bound to a cubane iron-sulfur cluster indicates both left-handed and right-handed folds could exist and have comparable stabilities. However, only the natural ferredoxin topology provides a significant network of backbone-to-cluster hydrogen bonds that would stabilize the metal-peptide complex. The optimal peptide configuration (alternating α(L),α(R)) is that of an α-sheet, providing an additional mechanism where oligomerization could stabilize the peptide and facilitate iron-sulfur cluster binding.


Subject(s)
Evolution, Molecular , Ferredoxins/chemistry , Ferredoxins/ultrastructure , Models, Chemical , Models, Genetic , Models, Molecular , Binding Sites , Computer Simulation , Energy Transfer , Ferredoxins/genetics , Protein Binding , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...