Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 528
Filter
2.
Environ Sci Technol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954631

ABSTRACT

Nitrate, a prevalent water pollutant, poses substantial public health concerns and environmental risks. Electrochemical reduction of nitrate (eNO3RR) has emerged as an effective alternative to conventional biological treatments. While extensive lab work has focused on designing efficient electrocatalysts, implementation of eNO3RR in practical wastewater settings requires careful consideration of the effects of various constituents in real wastewater. In this critical review, we examine the interference of ionic species commonly encountered in electrocatalytic systems and universally present in wastewater, such as halogen ions, alkali metal cations, and other divalent/trivalent ions (Ca2+, Mg2+, HCO3-/CO32-, SO42-, and PO43-). Notably, we categorize and discuss the interfering mechanisms into four groups: (1) loss of active catalytic sites caused by competitive adsorption and precipitation, (2) electrostatic interactions in the electric double layer (EDL), including ion pairs and the shielding effect, (3) effects on the selectivity of N intermediates and final products (N2 or NH3), and (4) complications by the hydrogen evolution reaction (HER) and localized pH on the cathode surface. Finally, we summarize the competition among different mechanisms and propose future directions for a deeper mechanistic understanding of ionic impacts on eNO3RR.

3.
PLoS Biol ; 22(7): e3002687, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38991663

ABSTRACT

Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.


Subject(s)
Astrocytes , Cognitive Dysfunction , Hippocampus , Lipocalin-2 , Long-Term Potentiation , Neuroinflammatory Diseases , Neurons , Animals , Astrocytes/metabolism , Astrocytes/pathology , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/pathology , Lipocalin-2/metabolism , Lipocalin-2/genetics , Mice , Hippocampus/metabolism , Hippocampus/pathology , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/metabolism , Neurons/metabolism , Neurons/pathology , Mice, Knockout , Male , Mice, Inbred C57BL , Receptors, N-Methyl-D-Aspartate/metabolism , Optogenetics , CA1 Region, Hippocampal/pathology , CA1 Region, Hippocampal/metabolism , Disease Models, Animal
4.
Environ Sci Technol ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39014918

ABSTRACT

Electrochemical advanced oxidation is an appealing point-of-use groundwater treatment option for removing pollutants such as 1,4-dioxane, which is difficult to remove by using conventional separation-based techniques. This study addresses a critical challenge in employing electrochemical cells in practical groundwater treatment─electrode stability over long-term operation. This study aims to simulate realistic environmental scenarios by significantly extending the experimental time scale, testing a flow-through cell in addition to a batch reactor, and employing an electrolyte with a conductivity equivalent to that of groundwater. We first constructed a robust titanium suboxide nanotube mesh electrode that is utilized as both anode and cathode. We then implemented a pulsed electrolysis strategy in which reactive oxygen species are generated during the anodic cycle, and the electrode is regenerated during the cathodic cycle. Under optimized conditions, single-pass treatment through the cell (effective area: 2 cm2) achieved a remarkable 65-70% removal efficiency for 1,4-dioxane in the synthetic groundwater for over 100 h continuous operation at a low current density of 5 mA cm-2 and a water flux of 6 L m-2 h-1. The electrochemical cell and pulse treatment scheme developed in this study presents a critical advancement toward practical groundwater treatment technology.

5.
Front Neurol ; 15: 1346858, 2024.
Article in English | MEDLINE | ID: mdl-38560732

ABSTRACT

Background: Mild cognitive impairment (MCI) is an intermediary condition between typical cognitive decline that occurs owing to aging and dementia. It is necessary to implement an intervention to slow the progression from MCI to Alzheimer's disease. This manuscript reports the protocol for a clinical trial on the effect of acupuncture in patients with MCI. Methods: The trial will be a randomized, prospective, parallel-arm, active-controlled trial. Sixty-four patients with MCI will be randomized to the Rehacom or acupuncture group (n = 32 each). The participants in the acupuncture group will receive electroacupuncture at GV24 (Shenting) and GV20 (Baihui) and acupuncture at EX-HN1 (Sishencong) once (30 min) a day, twice per week for 12 weeks. The patients in the Rehacom group will receive computerized cognitive rehabilitation using RehaCom software once (30 min) daily, twice weekly for 12 weeks. The primary outcome measure is the change in the Montreal Cognitive Assessment Scale score. The secondary outcome measures are the Geriatric Depression Scale, Alzheimer's Disease Assessment Scale-Korean version-cognitive subscale-3 scores, and European Quality of Life Five Dimensions Five Level Scale. The safety outcomes will include the incidence of adverse events, blood pressure, blood chemistry parameters, and pulse rate. The efficacy outcome will be assessed at baseline and at six weeks, 13 weeks, and 24 weeks after baseline. Discussion: The findings of this protocol will provide information regarding the effects of acupuncture on MCI. Clinical trial registration: https://cris.nih.go.kr/cris/search/detailSearch.do?search_lang=E&focus=reset_12&search_page=M&pageSize=10&page=undefined&seq=25579&status=5&seq_group=25579, KCT0008861.

6.
Biochem Biophys Res Commun ; 709: 149823, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38569245

ABSTRACT

Avian pathogenic Escherichia coli (APEC) causes enormous economic losses and is a primary contributor to the emergence of multidrug resistance (MDR)-related problems in the poultry industry. Bacteriophage (phage) therapy has been successful in controlling MDR, but phage-resistant variants have rapidly emerged through the horizontal transmission of diverse phage defense systems carried on mobile genetic elements. Consequently, while multiple phage cocktails are recommended for phage therapy, there is a growing need to explore simpler and more cost-effective phage treatment alternatives. In this study, we characterized two novel O78-specific APEC phages, φWAO78-1 and φHAO78-1, in terms of their morphology, genome, physicochemical stability and growth kinetics. Additionally, we assessed the susceptibility of thirty-two O78 APEC strains to these phages. We analyzed the roles of highly susceptible cells in intestinal settlement and fecal shedding (susceptible cell-assisted intestinal settlement and shedding, SAIS) of phages in chickens via coinoculation with phages. Furthermore, we evaluated a new strategy, susceptible cell-assisted resistant cell killing (SARK), by comparing phage susceptibility between resistant cells alone and a mixture of resistant and highly susceptible cells in vitro. As expected, high proportions of O78 APEC strains had already acquired multiple phage defense systems, exhibiting considerable resistance to φWAO78-1 and φHAO78-1. Coinoculation of highly susceptible cells with phages prolonged phage shedding in feces, and the coexistence of susceptible cells markedly increased the phage susceptibility of resistant cells. Therefore, the SAIS and SARK strategies were demonstrated to be promising both in vivo and in vitro.


Subject(s)
Bacteriophages , Escherichia coli Infections , Poultry Diseases , Animals , Bacteriophages/genetics , Chickens , Escherichia coli/genetics , Coliphages , Cell Death , Poultry Diseases/therapy
7.
ACS Nano ; 18(14): 10302-10311, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38537206

ABSTRACT

The electrochemical upcycling of nitrate (NO3-) to ammonia (NH3) holds promise for synergizing both wastewater treatment and NH3 synthesis. Efficient stripping of gaseous products (NH3, H2, and N2) from electrocatalysts is crucial for continuous and stable electrochemical reactions. This study evaluated a layered electrocatalyst structure using copper (Cu) dendrites to enable a high curvature and hydrophobicity and achieve a stratified liquid contact at the gas-liquid interface of the electrocatalyst layer. As such, gaseous product desorption or displacement from electrocatalysts was enhanced due to the separation of a wetted reaction zone and a nonwetted zone for gas transfer. Consequently, this electrocatalyst structure yielded a 2.9-fold boost in per-active-site activity compared with that with a low curvature and high hydrophilic counterpart. Moreover, a NH3 Faradaic efficiency of 90.9 ± 2.3% was achieved with nearly 100% NO3- conversion. This high-curvature hydrophobic Cu dendrite was further integrated with a gas-extraction membrane, which demonstrated a comparable NH3 yield from the real reverse osmosis retentate brine.

8.
Small ; : e2310562, 2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38431932

ABSTRACT

In recent years, there has been a substantial surge in the investigation of transition-metal dichalcogenides such as MoS2 as a promising electrochemical catalyst. Inspired by denitrification enzymes such as nitrate reductase and nitrite reductase, the electrochemical nitrate reduction catalyzed by MoS2 with varying local atomic structures is reported. It is demonstrated that the hydrothermally synthesized MoS2 containing sulfur vacancies behaves as promising catalysts for electrochemical denitrification. With copper doping at less than 9% atomic ratio, the selectivity of denitrification to dinitrogen in the products can be effectively improved. X-ray absorption characterizations suggest that two sulfur vacancies are associated with one copper dopant in the MoS2 skeleton. DFT calculation confirms that copper dopants replace three adjacent Mo atoms to form a trigonal defect-enriched region, introducing an exposed Mo reaction center that coordinates with Cu atom to increase N2 selectivity. Apart from the higher activity and selectivity, the Cu-doped MoS2 also demonstrates remarkably improved tolerance toward oxygen poisoning at high oxygen concentration. Finally, Cu-doped MoS2 based catalysts exhibit very low specific energy consumption during the electrochemical denitrification process, paving the way for potential scale-up operations.

9.
J Clin Med ; 13(6)2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38541958

ABSTRACT

Background: Few studies have documented the viability of E. coli-derived recombinant human bone morphogenetic protein-2 (rhBMP-2) in transforaminal lumbar interbody fusion (TLIF). This study aimed to assess the safety and fusion rate of rhBMP-2 in TLIF. Methods: The study was conducted as a prospective, multicenter, single-arm trial, and 30 patients needing one- or two-level TLIF were enrolled. Fusion rate was assessed using the 12-month interbody fusion rate on CT. Postoperative problems, including seroma, radiculitis, and ectopic bone formation, which have been documented as risks associated with rhBMP-2 in prior studies, were recorded. Results: The study demonstrated fusion outcomes in all instances at 52 and 104 weeks post-surgery. Significant improvements were observed in clinical outcomes, with ODI, SF-36, and VAS scores, all achieving statistical significance (p < 0.0001). No perioperative adverse events requiring reoperation were reported, and there were no incidences of seroma, radiculitis, cage migration, grafted bone extrusion, postoperative neurologic deficit, or deep wound infection. Conclusions: The study demonstrates the high safety and efficacy in inducing bone fusion of E. coli-derived rhBMP-2 in TLIF, with a notable absence of adverse postoperative complications. Trial registration: This study protocol was registered at Korea Clinical Research Information Service (number identifier: KCT0004738) on July 2020.

10.
Adv Mater ; 36(19): e2311341, 2024 May.
Article in English | MEDLINE | ID: mdl-38332453

ABSTRACT

Use of single-atom catalysts (SACs) has become a popular strategy for tuning activity and selectivity toward specific pathways. However, conventional SAC synthesis methods require high temperatures and pressures, complicated procedures, and expensive equipment. Recently, underpotential deposition (UPD) has been investigated as a promising alternative, yielding high-loading SAC electrodes under ambient conditions and within minutes. Yet only few studies have employed UPD to synthesize SACs, and all have been limited to UPD of Cu. In this work, a flexible UPD approach for synthesis of mono- and bi-metallic Cu, Fe, Co, and Ni SACs directly on oxidized, commercially available carbon electrodes is reported. The UPD mechanism is investigated using in situ X-ray absorption spectroscopy and, finally, the catalytic performance of a UPD-synthesized Co SAC is assessed for electrochemical nitrate reduction to ammonia. The findings expand upon the usefulness and versatility of UPD for SAC synthesis, with hopes of enabling future research toward realization of fast, reliable, and fully electrified SAC synthesis processes.

11.
Cell Rep ; 43(3): 113813, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38393947

ABSTRACT

Peptidoglycan recognition protein 1 (PGLYRP1) is a pattern-recognition protein that mediates antibacterial actions and innate immune responses. Its expression and role in neuroinflammatory conditions remain unclear. We observed the upregulation of PGLYRP1 in inflamed human and mouse spinal cord and brain, with microglia being the primary cellular source. Experiments using a recombinant PGLYRP1 protein show that PGLYRP1 potentiates reactive gliosis, neuroinflammation, and consequent behavioral changes in multiple animal models of neuroinflammation. Furthermore, shRNA-mediated knockdown of Pglyrp1 gene expression attenuates this inflammatory response. In addition, we identify triggering receptor expressed on myeloid cell-1 (TREM1) as an interaction partner of PGLYRP1 and demonstrate that PGLYRP1 promotes neuroinflammation through the TREM1-Syk-Erk1/2-Stat3 axis in cultured glial cells. Taken together, our results reveal a role for microglial PGLYRP1 as a neuroinflammation mediator. Finally, we propose that PGLYRP1 is a potential biomarker and therapeutic target in various neuroinflammatory diseases.


Subject(s)
Microglia , Neuroinflammatory Diseases , Animals , Mice , Humans , Microglia/metabolism , Triggering Receptor Expressed on Myeloid Cells-1/metabolism , Immunity, Innate , Inflammation/metabolism , Cytokines/metabolism
12.
Medicina (Kaunas) ; 60(2)2024 Feb 10.
Article in English | MEDLINE | ID: mdl-38399593

ABSTRACT

Background and Objectives: The surge in breast-related surgeries in Korea underscores the critical need for an accurate early diagnosis of silicone breast implant-related issues. Complications such as BIA-ALCL and BIA-SCC add complexity to breast health concerns, necessitating vigilant monitoring. Despite advancements, discrepancies persist between ultrasonographic and pathologic classifications of silicone implant ruptures, highlighting a need for enhanced diagnostic tools. This study explores the reliability of ultrasonography in diagnosing silicone breast implant ruptures and determining the extent of silicone migration, specifically with a focus on guiding potential capsulectomy based on pathology. Materials and Methods: A comprehensive review of medical records encompassing 5557 breast implants across 2790 patients who underwent ultrasound-assisted examinations was conducted. Among the screened implants, 8.9% (249 cases) were diagnosed with silicone breast implant rupture through ultrasonography. Subsequently, 89 women underwent revisional surgery, involving capsulectomy. The pathological analysis of 111 periprosthetic capsules from these cases aimed to assess the extent of silicone migration, and the findings were juxtaposed with the existing ultrasonographic rupture classification. Results: The diagnostic agreement between preoperative sonography and postoperative findings reached 100% for silicone breast implant ruptures. All eighty prosthetic capsules exhibiting a snowstorm sign in ultrasonography demonstrated silicone migration to capsules upon pathologic findings. Conclusions: High-resolution ultrasonography emerged as a valuable and reliable imaging modality for diagnosing silicone breast implant ruptures, with a notable ability to ascertain the extent of free silicone migration to capsules. This diagnostic precision is pivotal in informing decisions about potential capsulectomy during revisional surgery. The study advocates for an update to the current binary ultrasonographic classification, suggesting a more nuanced categorization into three types (subcapsular, intracapsular, and extracapsular) based on pathology.


Subject(s)
Breast Implants , Female , Humans , Breast Implants/adverse effects , Silicones/adverse effects , Point-of-Care Systems , Reproducibility of Results , Prosthesis Failure , Ultrasonography , Rupture , Magnetic Resonance Imaging/methods
13.
Sci Rep ; 14(1): 4035, 2024 02 19.
Article in English | MEDLINE | ID: mdl-38369553

ABSTRACT

Bioactive glass-ceramic (BGC) cage is a substitute for polyether ether ketone (PEEK) cages in anterior cervical discectomy and fusion (ACDF). Only a few comparative studies exist using PEEK and non-window-type BGC cages (CaO-SiO2-P2O5-B2O3) in single-level ACDF. This study compared PEEK cages filled with autologous iliac bone grafts and BGC cages regarding clinical safety and effectiveness. A retrospective case series was performed on 40 patients who underwent single-level ACDF between October 2020 and July 2021 by a single orthopedic spine surgeon. The spacers used in each ACDF were a PEEK cage with a void filled with an autologous iliac bone graft and a non-window-type BGC cage in 20 cases. The grafts were compared pre-operatively and post-operatively at 6 weeks and 3, 6, and 12 months. Post-operative complications were investigated in each group. Clinical outcome was measured, including Visual Analog Scale (VAS) scores of neck and arm pains, Japanese Orthopedic Association score (JOA), and Neck Disability Index (NDI). Dynamic lateral radiographs were used to assess the inter-spinous motion (ISM) between the fusion segment and subsidence. The fusion status was evaluated using a computed tomography (CT) scan. Overall, 39 patients (19 and 20 patients in the PEEK and BGC groups, respectively) were recruited. Eighteen (94.7%) and 19 (95.0%) patients in the PEEK and BGC groups, respectively, were fused 12 months post-operatively, as assessed by ISM in dynamic lateral radiograph and bone bridging formation proven in CT scan. The PEEK and BGC groups showed substantial improvement in neck and arm VAS, JOA, and NDI scores. No substantial difference was found in clinical and radiological outcomes between the PEEK and BGC groups. However, the operation time was considerably shorter in the BGC group than in the PEEK group. In conclusion, a non-window-type BCG cage is a feasible substitute for a PEEK cage with an autologous iliac bone graft in single-level ACDF.


Subject(s)
Polymers , Silicon Dioxide , Spinal Fusion , Humans , Retrospective Studies , Polyethylene Glycols , Benzophenones , Ketones , Diskectomy/methods , Cervical Vertebrae/diagnostic imaging , Cervical Vertebrae/surgery , Ceramics , Treatment Outcome , Spinal Fusion/methods
14.
J Pediatr Orthop ; 44(4): e351-e356, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38180022

ABSTRACT

BACKGROUND: There is a lack of information about the effects of untreated solitary osteochondroma (SO) on longitudinal growth of the lower extremities in children and adolescents. This study aimed to assess the coronal alignment and length of the lower extremity in patients with SO around the knee and to identify the factors related to the development of deformities. METHODS: We retrospectively reviewed 111 patients diagnosed with SO around the knee. The patients were classified into 2 groups depending on the location of the SO: 51 in the distal femur and 60 in the proximal tibia. Characteristics of the lesions, such as type, location, size, and distance from the joint line, were determined. Radiographic analysis of the lower limbs included mechanical lateral distal femoral angle, mechanical medial proximal tibial angle, whole-leg length, femoral length, and tibial length. RESULTS: The mean age at the time of diagnosis was 12.3±3.4 years. No statistically significant differences were found between the affected and contralateral sides for mechanical lateral distal femoral angle and mechanical medial proximal tibial angle in either the distal femur or the proximal tibia groups. In patients with femoral lesions, the femoral and whole-leg lengths were significantly shorter on the affected side than on the unaffected side ( P <0.001 and 0.002, respectively), and the mean differences were 2.1±3.6 and 2.1±4.4 mm, respectively. Univariate logistic regression analysis did not reveal any factors associated with limb length discrepancy (LLD). In patients with tibial lesions, no statistically significant differences were found in LLD. CONCLUSIONS: SOs around the knee did not cause clinically significant deformity of the lower extremity. However, in contrast to proximal tibia lesions, SO in the distal femur was associated with the shortening of the affected limb. Consideration should be given to the development of LLD in skeletally immature children with SO in the distal femur. LEVEL OF EVIDENCE: Level III-retrospective comparative study.


Subject(s)
Lower Extremity , Osteochondroma , Child , Adolescent , Humans , Retrospective Studies , Tibia/diagnostic imaging , Tibia/abnormalities , Femur/diagnostic imaging , Femur/abnormalities , Knee Joint/diagnostic imaging , Osteochondroma/diagnostic imaging
15.
ACS Sens ; 9(1): 9-22, 2024 01 26.
Article in English | MEDLINE | ID: mdl-38156963

ABSTRACT

It is crucial for early stage medical diagnostics to identify disease biomarkers at ultralow concentrations. A wide range of analytes can be identified using low-dimensional materials to build highly sensitive, targeted, label-free, field-effect transistor (FET) biosensors. Two-dimensional (2D) materials are preferable for high-performance biosensing because of their dramatic change in resistivity upon analyte adsorption or biomarker detection, tunable electronic properties, high surface activities, adequate stability, and layer-dependent semiconducting properties. We give a succinct overview of interesting applications for protein sensing with various architectural styles, such as 2D transition metal dichalcogenides (TMDs)-based FETs that include carbon nanotubes (CNTs), graphene (Gr), reduced graphene oxide (rGr), 2D transition-metal carbides (MXene), and Gr/MXene heterostructures. Because it might enable individuals to perform better, this review will be an important contribution to the field of medical science. These achievements demonstrate point-of-care diagnostics' abilities to detect biomarkers at ultrahigh performance levels. A summary of the present opportunities and challenges appears in the conclusion.


Subject(s)
Nanostructures , Nanotubes, Carbon , Nitrites , Transition Elements , Humans , Nanotubes, Carbon/chemistry , Nanostructures/chemistry , Transition Elements/chemistry , Biomarkers
16.
J Leukoc Biol ; 2023 Dec 27.
Article in English | MEDLINE | ID: mdl-38149462

ABSTRACT

Lipocalin-2 (LCN2), a neutrophil gelatinase-associated lipocalin (NGAL), is a 25 kDa secreted protein implicated in a broad range of inflammatory diseases affecting the brain and periphery. It is a pleotropic protein expressed by various immune and non-immune cells throughout the body. Importantly, the surge in LCN2 levels in disease states has been associated with a myriad of undesirable effects, further exacerbating the ongoing pathological processes. In the brain, glial cells are the principal source of LCN2, which plays a definitive role in determining their functional phenotypes. In different central nervous system (CNS) pathologies, an increased expression of glial LCN2 has been linked to neurotoxicity. LCN2 mediates a crosstalk between central and peripheral immune cells under neuroinflammatory conditions. One intriguing aspect is that elevated LCN2 levels in peripheral disorders, such as cancer, metabolic conditions, and liver diseases, potentially incite an inflammatory activation of glial cells while disrupting neuronal functions. This review comprehensively summarizes the influence of LCN2 on the exacerbation of neuroinflammation by regulating various cellular processes. Additionally, this review explores LCN2 as a mediator of neuroimmune crosstalk in various CNS pathologies and highlights the role of LCN2 in carrying inflammatory signals along the neuroimmune axis.

17.
Environ Sci Technol ; 57(47): 19054-19063, 2023 Nov 28.
Article in English | MEDLINE | ID: mdl-37943016

ABSTRACT

Peroxymonosulfate (PMS)-based electrochemical advanced oxidation processes (EAOPs) have received widespread attention in recent years, but the precise nature of PMS activation and its impact on the overall process performance remain poorly understood. This study presents the first demonstration of the critical role played by the oxygen reduction reaction in the effective utilization of PMS and the subsequent enhancement of overall pollutant remediation. We observed the concurrent generation of H2O2 via oxygen reduction during the cathodic PMS activation by a model nitrogen-doped carbon nanotube catalyst. A complex interplay between H2O2 generation and PMS activation, as well as a locally increased pH near the electrode due to the oxygen reduction reaction, resulted in a SO4•-/•OH-mixed oxidation environment that facilitated pollutant degradation. The findings of this study highlight a unique dependency between PMS-driven and H2O2-driven EAOPs and a new perspective on a previously unexplored route for further enhancing PMS-based treatment processes.


Subject(s)
Environmental Pollutants , Hydrogen Peroxide , Peroxides , Oxidation-Reduction , Oxygen
18.
Prog Neurobiol ; 231: 102544, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37940033

ABSTRACT

Peripheral nerve injury disrupts the Schwann cell-axon interaction and the cellular communication between them. The peripheral nervous system has immense potential for regeneration extensively due to the innate plastic potential of Schwann cells (SCs) that allows SCs to interact with the injured axons and exert specific repair functions essential for peripheral nerve regeneration. In this study, we show that EBP50 is essential for the repair function of SCs and regeneration following nerve injury. The increased expression of EBP50 in the injured sciatic nerve of control mice suggested a significant role in regeneration. The ablation of EBP50 in mice resulted in delayed nerve repair, recovery of behavioral function, and remyelination following nerve injury. EBP50 deficiency led to deficits in SC functions, including proliferation, migration, cytoskeleton dynamics, and axon interactions. The adeno-associated virus (AAV)-mediated local expression of EBP50 improved SCs migration, functional recovery, and remyelination. ErbB2-related proteins were not differentially expressed in EBP50-deficient sciatic nerves following injury. EBP50 binds and stabilizes ErbB2 and activates the repair functions to promote regeneration. Thus, we identified EBP50 as a potent SC protein that can enhance the regeneration and functional recovery driven by NRG1-ErbB2 signaling, as well as a novel regeneration modulator capable of potential therapeutic effects.


Subject(s)
Nerve Regeneration , Peripheral Nerve Injuries , Phosphoproteins , Schwann Cells , Sodium-Hydrogen Exchangers , Animals , Mice , Axons/physiology , Nerve Regeneration/physiology , Peripheral Nerve Injuries/metabolism , Schwann Cells/metabolism , Sciatic Nerve/injuries , Sciatic Nerve/metabolism , Phosphoproteins/metabolism , Sodium-Hydrogen Exchangers/metabolism
19.
Nat Commun ; 14(1): 7255, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37945562

ABSTRACT

Ceramic membranes are a promising alternative to polymeric membranes for selective separations, given their ability to operate under harsh chemical conditions. However, current fabrication technologies fail to construct ceramic membranes suitable for selective molecular separations. Herein, we demonstrate a molecular-level design of ceramic thin-film composite membranes with tunable subnanometer pores for precise molecular sieving. Through burning off the distributed carbonaceous species of varied dimensions within hybrid aluminum oxide films, we created membranes with tunable molecular sieving. Specifically, the membranes created with methanol showed exceptional selectivity toward monovalent and divalent salts. We attribute this observed selectivity to the dehydration of the large divalent ions within the subnanometer pores. As a comparison, smaller monovalent ions can rapidly permeate with an intact hydration shell. Lastly, the flux of neutral solutes through each fabricated aluminum oxide membrane was measured for the demonstration of tunable separation capability. Overall, our work provides the scientific basis for the design of ceramic membranes with subnanometer pores for molecular sieving using atomic layer deposition.

20.
Front Cell Dev Biol ; 11: 1288373, 2023.
Article in English | MEDLINE | ID: mdl-37954206

ABSTRACT

BLT2 is a low-affinity leukotriene B4 receptor that plays an essential role in the pathogenesis of various inflammatory diseases, including asthma and cancer. BLT2 is minimally expressed in a normal internal environment but is overexpressed in a stress-induced inflammatory environment. Recent research indicated that human BLT2 has two distinct forms. Although their functions are likely to be different, very few studies investigated these differences. Therefore, this paper will discuss about the two distinct forms of human BLT2; the short-form of BLT2 and the long-form of BLT2.

SELECTION OF CITATIONS
SEARCH DETAIL
...