Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biol Reprod ; 108(5): 758-777, 2023 05 10.
Article in English | MEDLINE | ID: mdl-36799886

ABSTRACT

Chlamydia is the most common bacterial sexually transmitted infection worldwide and it is widely acknowledged that controlling the rampant community transmission of this infection requires vaccine development. In this study, for the first time, we elucidate the long-term response to male mouse chlamydial vaccination with chlamydial major outer membrane protein (MOMP) and ISCOMATRIX (IMX) both prophylactically and in a novel therapeutic setting. Vaccination significantly reduced and, in some cases, cleared chlamydial burden from the prostates, epididymides, and testes, which correlates with high IgG and IgA tires in tissues and serum. Important markers of sperm health and fertility were protected including sperm motility and proteins associated with fertility in men. Within splenocytes, expression of IFNγ, TNFα, IL17, IL13, IL10, and TGFß were changed by both infection and vaccination within CD4 and CD8 T cells and regulatory T cells. Within the testicular tissue, phenotypic and concentration changes were observed in macrophages and T cells (resident and transitory). This revealed some pathogenic phenotypes associated with infection and critically that vaccination allows maintenance of testicular homeostasis, likely by preventing significant influx of CD4 T cells and promoting IL10 production. Finally, we demonstrated the testes contained immature (B220+) B cells and mature (CD138+) Chlamydia-specific plasma cells. Thus, through vaccination, we can maintain the healthy function of the testes, which is vital to protection of male fertility.


Subject(s)
Chlamydia Infections , Chlamydia muridarum , Male , Animals , Mice , Chlamydia Infections/prevention & control , Chlamydia Infections/complications , Interleukin-10 , Semen , Sperm Motility , Spermatozoa/pathology , Vaccination , Bacterial Outer Membrane Proteins
2.
Skin Res Technol ; 28(4): 614-622, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35753079

ABSTRACT

BACKGROUND: Visualizing the ultraviolet (UV) dose on skin serve as an intuitive approach to ensure appropriate sunscreen usage and reduce the risk of erythema. UV dose is determined by a number of external factors, such as properties of sunscreens, weather, and type of outdoor activity. We propose a framework for visualizing UV doses that considers various external factors. MATERIALS AND METHODS: First, the skin of a three-dimensional human model was represented using triangular meshes, and various static postures and dynamic motions were simulated to express outdoor activities. Then, we evaluated the persistency and insufficiency properties of sunscreen, which are time dependent and directly affect the effectiveness of the sunscreen skin protection factor (SPF) during UV exposure. Finally, to calculate the UV dose in real time, we tracked the trajectory of the sun and motion of the skin while considering the time-dependent properties of sunscreen. RESULTS: An S/W system was implemented based on the proposed framework to visualize the distribution of UV doses through dynamic color changes in exposed skin areas. The color types include true colors, which represent the minimum erythema dose (MED), and pseudo colors representing states before 1 MED is reached. We devised various examples to discuss the usability of the proposed framework. CONCLUSION: The system conveniently displays the MED according to an individual's skin phototype. When the properties of a wide range of commercial sunscreens are added to the system database, it is expected that the rate of appropriate sunscreen usage by customers will increase.


Subject(s)
Sunscreening Agents , Ultraviolet Rays , Erythema/drug therapy , Erythema/prevention & control , Humans , Skin , Sunscreening Agents/therapeutic use , Ultraviolet Rays/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...