Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 13.200
Filter
1.
Nat Prod Res ; : 1-6, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38992973

ABSTRACT

There is increasing interest in hair loss treatment because a growing number of people affected. Nepenthes kampotiana Lecomte is known for its anticancer effects, but its potential for preventing hair loss has not been researched. Therefore, this study focused on the hair loss prevention effects of N. kampotiana Lecomte ethanol extract (Nk-EE). The results showed that Nk-EE had a proliferative effect on human follicle dermal papilla cells and inhibited cell death. In vivo experiments using androgenic areata models showed that Nk-EE had a positive effect on a variety of biomarkers such as hair-to-skin ratio, hair type frequency, and hair thickness. The results of this study suggest that Nk-EE has potential as an effective treatment for androgenic alopecia.

2.
Article in English | MEDLINE | ID: mdl-38981606

ABSTRACT

Lower oxidative capacity in skeletal muscles (SKMs) is a prevailing cause of metabolic diseases. Exercise not only enhances the fatty acid oxidation (FAO) capacity of SKMs but also increases lactate levels. Given that lactate may contribute to tricarboxylic acid cycle (TCA) flux and impact monocarboxylate transporter 1 in the SKMs, we hypothesize that lactate can influence glucose and fatty acid (FA) metabolism. To test this hypothesis, we investigated the mechanism underlying lactate-driven FAO regulation in the SKM of mice with diet-induced obesity (DIO). Lactate was administered to DIO mice immediately after exercise over three weeks. We found that increased lactate levels enhanced energy expenditure mediated by fat metabolism during exercise recovery and decreased triglyceride levels in DIO mice SKMs. To determine the lactate-specific effects without exercise, we administered lactate to mice on a high-fat diet (HFD) for eight weeks. Similar to our exercise conditions, lactate increased FAO, TCA cycle activity, and mitochondrial respiration in the SKMs of HFD-fed mice. Additionally, under sufficient FA conditions, lactate increased uncoupling protein-3 abundance via the NADH/NAD+ shuttle. Conversely ATP synthase abundance decreased in the SKMs of HFD mice. Taken together, our results suggest that lactate amplifies the adaptive increase in FAO capacity mediated by the TCA cycle and mitochondrial respiration in SKMs under sufficient FA abundance.

3.
J Cosmet Dermatol ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39005194

ABSTRACT

INTRODUCTION: Botulinum neurotoxin (BoNT) injections are widely used for the treatment of masseter muscle hypertrophy in Southeast Asia. However, there remains a lack of consensus regarding the optimal injection technique. This study aimed to compare the efficacy and patient discomfort associated with single-entry point injections versus multiple three-point injections for masseter muscle hypertrophy treatment with BoNT. MATERIALS AND METHODS: Sixteen participants, comprising both male and female Korean adults aged 22-63, were enrolled in the study. On the left side of the face, single-entry point injections were administered, followed by multidirectional injections, while on the right side, three-point injections were given. Pain intensity during the procedure was assessed using visual analogue scale scores. RESULT: Our results revealed that participants experienced lower levels of pain with single-entry point injections compared to three-point injections (average visual analogue scores of 3.31 and 5.19, respectively). CONCLUSION: These findings highlight the potential benefits of single-entry point injections in reducing patient discomfort during masseter muscle hypertrophy treatment with BoNT. We advocate for further research to validate these findings and encourage practitioners to consider single-entry point injections as a viable option for enhancing treatment outcomes in their clinical practice.

4.
Pharmacology ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39008961

ABSTRACT

BACKGROUND: Cholesterol homeostasis in the human body is a crucial process that involves a delicate balance between dietary cholesterol absorption in the intestine and de novo cholesterol synthesis in the liver. Both pathways contribute significantly to the overall pool of cholesterol in the body, influencing plasma cholesterol levels and impacting cardiovascular health. Elevated absorption of cholesterol in the intestines has a suppressive impact on the synthesis of cholesterol in the liver, serving to preserve cholesterol balance. Nonetheless, the precise mechanisms driving this phenomenon remain largely unclear. SUMMARY: This review aims to discuss the previously unrecognized role of cholesin and GPR146 in the regulation of cholesterol biosynthesis, providing a novel conceptual framework for understanding cholesterol homeostasis. KEY MESSAGES: The discovery of cholesin, a novel protein implicated in the regulation of cholesterol homeostasis, represents a significant advancement in our understanding of cholesterol biosynthesis and its associated pathways. The cholesin-GPR146 axis could have profound implications across various therapeutic areas concerning abnormal cholesterol metabolism, offering new hope for patients and improving overall healthcare outcomes.

5.
Small ; : e2403737, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38949018

ABSTRACT

In next-generation neuromorphic computing applications, the primary challenge lies in achieving energy-efficient and reliable memristors while minimizing their energy consumption to a level comparable to that of biological synapses. In this work, hexagonal boron nitride (h-BN)-based metal-insulator-semiconductor (MIS) memristors operating is presented at the attojoule-level tailored for high-performance artificial neural networks. The memristors benefit from a wafer-scale uniform h-BN resistive switching medium grown directly on a highly doped Si wafer using metal-organic chemical vapor deposition (MOCVD), resulting in outstanding reliability and low variability. Notably, the h-BN-based memristors exhibit exceptionally low energy consumption of attojoule levels, coupled with fast switching speed. The switching mechanisms are systematically substantiated by electrical and nano-structural analysis, confirming that the h-BN layer facilitates the resistive switching with extremely low high resistance states (HRS) and the native SiOx on Si contributes to suppressing excessive current, enabling attojoule-level energy consumption. Furthermore, the formation of atomic-scale conductive filaments leads to remarkably fast response times within the nanosecond range, and allows for the attainment of multi-resistance states, making these memristors well-suited for next-generation neuromorphic applications. The h-BN-based MIS memristors hold the potential to revolutionize energy consumption limitations in neuromorphic devices, bridging the gap between artificial and biological synapses.

6.
World J Clin Cases ; 12(18): 3615-3621, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983420

ABSTRACT

BACKGROUND: Effective bowel cleansing is essential for a successful colonoscopy. Laxatives, such as polyethylene glycol, are commonly used for bowel preparation. Vomiting is a frequent complication during bowel preparation, and forceful vomiting can potentially lead to esophageal perforation, as reported in several previous cases. However, pharyngeal perforation during bowel preparation has not been previously documented. Here, we present a case of pharyngeal perforation induced by forceful vomiting during bowel preparation. CASE SUMMARY: A 38-year-old man with a history of hypertension, dyslipidemia, diabetes mellitus, and end-stage renal disease on hemodialysis was admitted for evaluation of recurrent abdominal pain. The patient complained of sudden pain in the neck, throat, and anterior chest following forceful vomiting during bowel preparation. Physical examination revealed crepitus under the skin of the neck and anterior chest on palpation, and upper gastrointestinal endoscopy revealed pharyngeal perforation. The perforation site was located above the upper esophageal sphincter, which distinguished it from Boerhaave's syndrome. Conservative medical management was chosen after consultation with a thoracic surgeon and an otolaryngologist, considering the patient's mild symptoms, stable vital signs, and the small size of the lesion; the perforation resolved without endoscopic or surgical intervention. The patient was discharged from hospital two weeks after the perforation. CONCLUSION: Despite its rarity, pharyngeal perforation should be considered a potential complication of bowel preparation for colonoscopy.

7.
Int J Mol Sci ; 25(13)2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39000606

ABSTRACT

Sarcopenia refers to an age-related decrease in muscle mass and strength. The gut-muscle axis has been proposed as a promising target to alleviate muscle atrophy. The effect of KL-Biome-a postbiotic preparation comprising heat-killed Lactiplantibacillus plantarum KM-2, its metabolites, and an excipient (soybean powder)-on muscle atrophy was evaluated using dexamethasone (DEX)-induced atrophic C2C12 myoblasts and C57BL/6J mice. KL-Biome significantly downregulated the expression of genes (Atrogin-1 and MuRF1) associated with skeletal muscle degradation but increased the anabolic phosphorylation of FoxO3a, Akt, and mTOR in C2C12 cells. Oral administration of KL-Biome (900 mg/kg) for 8 weeks significantly improved muscle mass, muscle function, and serum lactate dehydrogenase levels in DEX-treated mice. KL-Biome administration increased gut microbiome diversity and reversed DEX-mediated gut microbiota alterations. Furthermore, it significantly increased the relative abundances of the genera Subdologranulum, Alistipes, and Faecalibacterium prausnitzii, which are substantially involved in short-chain fatty acid production. These findings suggest that KL-Biome exerts beneficial effects on muscle atrophy by regulating gut microbiota.


Subject(s)
Dexamethasone , Gastrointestinal Microbiome , Mice, Inbred C57BL , Muscle, Skeletal , Muscular Atrophy , Animals , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Muscular Atrophy/chemically induced , Mice , Dexamethasone/pharmacology , Dexamethasone/adverse effects , Gastrointestinal Microbiome/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Male , Muscle Proteins/metabolism , Muscle Proteins/genetics , Forkhead Box Protein O3/metabolism , Forkhead Box Protein O3/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , SKP Cullin F-Box Protein Ligases/genetics , Probiotics/administration & dosage , Tripartite Motif Proteins/metabolism , Tripartite Motif Proteins/genetics , Sarcopenia/drug therapy , Sarcopenia/metabolism , Sarcopenia/pathology , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Cell Line , Lactobacillus plantarum
8.
Article in English | MEDLINE | ID: mdl-38995165

ABSTRACT

A Gram-negative, non-motile, and creamy-white coloured bacterium, designated CAU 1616T, was isolated from sea sand collected at Ayajin Beach, Goseong-gun, Republic of Korea. The bacterium was found to grow optimally at 37 °C, pH 8.0-8.5, and with 1-5 % (w/v) NaCl. Phylogenetic analyses based on the 16S rRNA gene sequences placed strain CAU 1616T within the order Rhodospirillales. The highest 16S rRNA gene sequence similarity was to Fodinicurvata fenggangensis YIM D812T (94.1 %), Fodinicurvata sediminis YIM D82T (93.7 %), Fodinicurvata halophila BA45ALT (93.6 %) and Algihabitans albus HHTR 118T (92.3 %). Comparing strain CAU 1616T with closely related species (Fodinicurvata fenggangensis YIM D812T and Fodinicurvata sediminis YIM D82T), the average nucleotide identity based on blast+ values were 69.7-69.8 %, the average amino acid identity values were 61.3-61.4 %, and the digital DNA-DNA hybridization values were 18.4-18.5 %. The assembled draft genome of strain CAU 1616T had 29 contigs with an N50 value of 385.8 kbp, a total length of 3 490 371 bp, and a DNA G+C content of 65.1 mol%. The predominant cellular fatty acids were C18 : 1 2-OH, C19 : 0 cyclo ω8c, and summed feature 8 (C18 : 1 ω6c and/or C18 : 1 ω7c). The major respiratory quinone was Q-10. Based on phenotypic, phylogenetic, and chemotaxonomic evidence, strain CAU 1616T represents a novel genus in the family Rhodovibrionaceae, for which the name Aquibaculum arenosum gen. nov., sp. nov. is proposed. The type strain is CAU 1616T (=KCTC 82428T=MCCC 1K06089T).


Subject(s)
Bacterial Typing Techniques , Base Composition , DNA, Bacterial , Fatty Acids , Nucleic Acid Hybridization , Phylogeny , RNA, Ribosomal, 16S , Sand , Sequence Analysis, DNA , RNA, Ribosomal, 16S/genetics , Fatty Acids/chemistry , DNA, Bacterial/genetics , Republic of Korea , Sand/microbiology , Seawater/microbiology , Ubiquinone
9.
Anim Cells Syst (Seoul) ; 28(1): 340-352, 2024.
Article in English | MEDLINE | ID: mdl-39011371

ABSTRACT

Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. Tenebrio molitor larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.

10.
JMIR Med Educ ; 10: e51282, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38989848

ABSTRACT

Background: Accurate medical advice is paramount in ensuring optimal patient care, and misinformation can lead to misguided decisions with potentially detrimental health outcomes. The emergence of large language models (LLMs) such as OpenAI's GPT-4 has spurred interest in their potential health care applications, particularly in automated medical consultation. Yet, rigorous investigations comparing their performance to human experts remain sparse. Objective: This study aims to compare the medical accuracy of GPT-4 with human experts in providing medical advice using real-world user-generated queries, with a specific focus on cardiology. It also sought to analyze the performance of GPT-4 and human experts in specific question categories, including drug or medication information and preliminary diagnoses. Methods: We collected 251 pairs of cardiology-specific questions from general users and answers from human experts via an internet portal. GPT-4 was tasked with generating responses to the same questions. Three independent cardiologists (SL, JHK, and JJC) evaluated the answers provided by both human experts and GPT-4. Using a computer interface, each evaluator compared the pairs and determined which answer was superior, and they quantitatively measured the clarity and complexity of the questions as well as the accuracy and appropriateness of the responses, applying a 3-tiered grading scale (low, medium, and high). Furthermore, a linguistic analysis was conducted to compare the length and vocabulary diversity of the responses using word count and type-token ratio. Results: GPT-4 and human experts displayed comparable efficacy in medical accuracy ("GPT-4 is better" at 132/251, 52.6% vs "Human expert is better" at 119/251, 47.4%). In accuracy level categorization, humans had more high-accuracy responses than GPT-4 (50/237, 21.1% vs 30/238, 12.6%) but also a greater proportion of low-accuracy responses (11/237, 4.6% vs 1/238, 0.4%; P=.001). GPT-4 responses were generally longer and used a less diverse vocabulary than those of human experts, potentially enhancing their comprehensibility for general users (sentence count: mean 10.9, SD 4.2 vs mean 5.9, SD 3.7; P<.001; type-token ratio: mean 0.69, SD 0.07 vs mean 0.79, SD 0.09; P<.001). Nevertheless, human experts outperformed GPT-4 in specific question categories, notably those related to drug or medication information and preliminary diagnoses. These findings highlight the limitations of GPT-4 in providing advice based on clinical experience. Conclusions: GPT-4 has shown promising potential in automated medical consultation, with comparable medical accuracy to human experts. However, challenges remain particularly in the realm of nuanced clinical judgment. Future improvements in LLMs may require the integration of specific clinical reasoning pathways and regulatory oversight for safe use. Further research is needed to understand the full potential of LLMs across various medical specialties and conditions.


Subject(s)
Artificial Intelligence , Cardiology , Humans , Cardiology/standards
11.
Clin Infect Dis ; 79(Supplement_1): S53-S62, 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38996037

ABSTRACT

BACKGROUND: Cholera outbreaks have afflicted Ethiopia, with nearly 100 000 cases and 1030 deaths reported from 2015 to 2023, emphasizing the critical need to understand water, sanitation, and hygiene (WaSH) risk factors. METHODS: We conducted a cross-sectional household (HH) survey among 870 HHs in Shashemene Town and Shashemene Woreda, alongside extracting retrospective cholera case data from the Ethiopian Public Health Institute database. Relationships between WaSH and sociodemographic/economic-levels of HHs were examined. WaSH status and cholera attack rates (ARs) were described at kebele-level using geospatial mapping, and their association was statistically analyzed. RESULTS: Access to basic drinking water, sanitation, and hygiene facilities was limited, with 67.5% (95% confidence interval, 64.4-70.6), 73.4% (70.3-76.3), and 30.3% (27.3-33.3) of HHs having access, respectively. Better WaSH practices were associated with urban residence (adjusted odds ratio, 1.7, [95% confidence interval, 1.1-2.7]), higher educational levels (2.7 [1.2-5.8]), and wealth (2.5 [1.6-4.0]). The association between cholera ARs and at least basic WaSH status was not statistically significant (multiple R2 = 0.13; P = .36), although localized effects were suggested for sanitation (Moran I = 0.22; P = .024). CONCLUSIONS: Addressing gaps in WaSH access and hygiene practices is crucial for reducing cholera risk. Further analyses with meaningful covariates and increased sample sizes are necessary to understand the association between cholera AR and specific WaSH components.


Subject(s)
Cholera , Hygiene , Sanitation , Humans , Ethiopia/epidemiology , Cholera/epidemiology , Cholera/prevention & control , Hygiene/standards , Cross-Sectional Studies , Risk Factors , Male , Female , Adult , Adolescent , Disease Outbreaks , Retrospective Studies , Drinking Water/microbiology , Young Adult , Child , Family Characteristics , Middle Aged , Water Supply/standards , Child, Preschool
12.
Ecotoxicol Environ Saf ; 281: 116665, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38964062

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), notably benzo[a]pyrene (BaP), are environmental contaminants with multiple adverse ecological implications. Numerous studies have suggested the use of BaP biodegradation using various bacterial strains to remove BaP from the environment. This study investigates the BaP biodegradation capability of Pigmentiphaga kullae strain KIT-003, isolated from the Nak-dong River (South Korea) under specific environmental conditions. The optimum conditions of biodegradation were found to be pH 7.0, 35°C, and a salinity of 0 %. GC-MS analysis suggested alternative pathways by which KIT-003 produced catechol from BaP through several intermediate metabolites, including 4-formylchrysene-5-carboxylic acid, 5,6-dihydro-5,6-dihydroxychrysene-5-carboxylic acid (isomer: 3,4-dihydro-3,4-dihydroxychrysene-4-carboxylic acid), naphthalene-1,2-dicarboxylic acid, and 2-hydroxy-1-naphthoic acid. Proteomic profiles indicated upregulation of enzymes associated with aromatic compound degradation, such as nahAc and nahB, and of those integral to the tricarboxylic acid cycle, reflecting the strain's adaptability to and degradation of BaP. Lipidomic analysis of KIT-003 demonstrated that BaP exposure induced an accumulation of glycerolipids such as diacylglycerol and triacylglycerol, indicating their crucial role in bacterial adaptation mechanisms under BaP stress. This study provides significant scientific knowledge regarding the intricate mechanisms involved in BaP degradation by microorganisms.


Subject(s)
Benzo(a)pyrene , Biodegradation, Environmental , Benzo(a)pyrene/metabolism , Benzo(a)pyrene/toxicity , Republic of Korea , Proteomics , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/toxicity , Gas Chromatography-Mass Spectrometry , Catechols/metabolism , Rivers/chemistry , Rivers/microbiology , Multiomics
13.
Neurocrit Care ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-38997449

ABSTRACT

BACKGROUND: Hyperosmolar therapy has long been a cornerstone in managing increased intracranial pressure and improving outcomes in severe traumatic brain injury (TBI). This therapy hinges on elevating serum osmolality, creating an osmotic gradient that draws excess water from the brain's cellular and interstitial compartments and effectively reducing cerebral edema. Given this information, we hypothesized that the serum hyperosmolality prior to any treatment could significantly impact the clinical outcomes of patients with severe TBI, potentially mitigating secondary cerebral edema after trauma. METHODS: Data were extracted from the Korean Multi-center Traumatic Brain Injury data bank, encompassing 4628 patients with TBI admitted between January 2016 and December 2018. Of these, 507 patients diagnosed with severe TBI (Glasgow Coma Scale score < 9) were selected for comprehensive analysis across four data domains: clinical, laboratory, initial computed tomography scan, and treatment. Serum osmolality was assessed prior to treatment, and the hyperosmolar group was defined by a pretreatment serum osmolality exceeding 320 mOsm/L, whereas favorable outcomes were characterized by a modified Rankin Scale score of ≤ 3 at 6 months after trauma. Multivariate regression with receiver operating characteristic curve analysis and propensity score matching were used to dissect the data set. RESULTS: Multivariate analysis showed serum osmolality is significantly associated with clinical outcome in patients with severe TBI (p < 0.001). The optimal cutoff value for predicting favorable outcome was 331 mOsm/L, with a sensitivity of 38.9% and a specificity of 87.7%. Notably, the propensity score matching analysis comparing patients with pretreatment serum hyperosmolality with those without indicated a markedly improved functional outcome in the former group (32.5% vs 18.8%, p = 0.025). CONCLUSIONS: The present study has uncovered a significant correlation between the pretreatment serum osmolality and the clinical outcomes of patients with severe TBI. These findings offer a novel perspective, indicating that a serum hyperosmolality prior to any treatment might potentially have a neuroprotective effect in patients with severe TBI.

14.
Ophthalmic Epidemiol ; : 1-8, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38968383

ABSTRACT

PURPOSE: Traumatic globe injury is classified into closed-globe and open-globe injury (OGI); OGI leads to a worse prognosis. We aimed to identify causative activities and prognostic factors of OGI in a metropolitan city in South Korea. METHODS: This retrospective observational study used a prospective eye-injury registry conducted in Daegu, South Korea, between 1 August 2016 and 31 July 2021. We identified epidemiology and visual outcomes of OGI at four tertiary hospitals. Those with the best visual acuity lower than counting fingers at the 6-month follow-up were considered to have poor visual outcome. RESULTS: Of 9,208 patients with eye injuries, 282 had OGI. Most OGI patients were male (261, 92.6%), with the largest proportion in their 50s (76, 27.0%). The most frequent causative activity was mowing (59, 20.9%), and poor visual outcome was most seen in assault (7, 87.5%) and sports activity (9, 81.8%). Hammering, metal work, and sports activity were prevalent in those under 30, and mowing was most prevalent in those in their 50s (16, 21.1%) and 60s (29, 40.3%). In the multivariable logistic regression analysis, OGI related to traffic accident and sports activity were presented poor prognosis (adjusted odds ratio [aOR] 13.259, 95% confidence interval [CI] 1.202-146.205 for traffic accident; aOR 6.801, 95% CI 1.064-43.487 for sports activity). CONCLUSION: We need to develop advanced vehicle safety equipment, implement public education promoting seat belt usage and hazards of OGI, establish eye protection standards for key causal activities, and provide eye protection equipment for sports activities and mowing.

15.
Ann Surg Oncol ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38954089

ABSTRACT

BACKGROUND: Patients achieving pathological complete response (pCR) post-neoadjuvant chemoradiotherapy (nCRT) and surgery for locally advanced esophageal squamous cell carcinoma (ESCC) have a favorable prognosis. However, recurrence occurs in approximately 20-30% of all patients, with few studies evaluating their prognostic factors. We identified these prognostic factors, including inflammation-based markers, in patients with ESCC showing pCR after nCRT and surgery. PATIENTS AND METHODS: Patients with ESCC undergoing esophagectomy post-nCRT (January 2007-August 2017) were studied. Survival analysis evaluated 5-year overall (OS) and recurrence-free survival (RFS). Risk factors, including inflammation factors, neutrophil-to-lymphocyte ratio, and platelet-to-lymphocyte ratio (PLR), were analyzed using Cox-proportional hazards model. RESULTS: Overall, 123patients participated herein. After a median follow-up duration of 67 months (44-86 months), 17 patients (12.3%) had recurrent disease. The 5-year OS and RFS rates were 71.6% and 68.0%, respectively. In the multivariable analysis, older age ( ≥ 60 years) [hazard ratio (HR) 3.228, 95% confidence interval (CI) 1.478-7.048, p = 0.003], higher pretreatment T stage (≥ T3; HR 2.563, 95% CI 1.335-4.922, p = 0.005), nonapplication of induction chemotherapy (HR 2.389, 95% CI 1.184-4.824, p = 0.015), and higher post-nCRT PLR (≥ 184.2; HR 2.896, 95% CI 1.547-5.420, p = 0.001) were poor independent prognostic factors for 5-year RFS. The patient group with three to four identified factors with poor outcomes exhibited a 5-year RFS rate of 46.2%. CONCLUSIONS: Significant prognostic factors include higher post-nCRT PLR, older age, higher clinical T stage, and nonapplication of induction chemotherapy. Identifying higher recurrence risk patients is crucial for tailored follow-up and treatment.

17.
J Am Chem Soc ; 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38959476

ABSTRACT

Immuno-photodynamic therapy (IPDT) has emerged as a new modality for cancer treatment. Novel photosensitizers can help achieve the promise inherent in IPDT, namely, the complete eradication of a tumor without recurrence. We report here a small molecule photosensitizer conjugate, LuCXB. This IPDT agent integrates a celecoxib (cyclooxygenase-2 inhibitor) moiety with a near-infrared absorbing lutetium texaphyrin photocatalytic core. In aqueous environments, the two components of LuCXB are self-associated through inferred donor-acceptor interactions. A consequence of this intramolecular association is that upon photoirradiation with 730 nm light, LuCXB produces superoxide radicals (O2-•) via a type I photodynamic pathway; this provides a first line of defense against the tumor while promoting IPDT. For in vivo therapeutic applications, we prepared a CD133-targeting, aptamer-functionalized exosome-based nanophotosensitizer (Ex-apt@LuCXB) designed to target cancer stem cells. Ex-apt@LuCXB was found to display good photosensitivity, acceptable biocompatibility, and robust tumor targetability. Under conditions of photoirradiation, Ex-apt@LuCXB acts to amplify IPDT while exerting a significant antitumor effect in both liver and breast cancer mouse models. The observed therapeutic effects are attributed to a synergistic mechanism that combines antiangiogenesis and photoinduced cancer immunotherapy.

18.
ERJ Open Res ; 10(4)2024 Jul.
Article in English | MEDLINE | ID: mdl-38957166

ABSTRACT

This study showed a significantly lower incidence of ILD among COVID-19 vaccinated individuals compared to unvaccinated, suggesting that the risk of COVID-19 vaccine-related ILD is not as high as previously reported https://bit.ly/3TWzzxP.

19.
Korean Circ J ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38956938

ABSTRACT

BACKGROUND AND OBJECTIVES: Although the clinical consequences of advanced heart failure (HF) may be similar across different etiologies of cardiomyopathies, their proteomic expression may show substantial differences in relation to underlying pathophysiology. We aimed to identify myocardial tissue-based proteomic characteristics and the underlying molecular pathophysiology in non-ischemic cardiomyopathy with different etiologies. METHODS: Comparative extensive proteomic analysis of the myocardium was performed in nine patients with biopsy-proven non-ischemic cardiomyopathies (3 dilated cardiomyopathy [DCM], 2 hypertrophic cardiomyopathy [HCM], and 4 myocarditis) as well as five controls using tandem mass tags combined with liquid chromatography-mass spectrometry. Differential protein expression analysis, Gene Ontology (GO) analysis, and Ingenuity Pathway Analysis (IPA) were performed to identify proteomic differences and molecular mechanisms in each cardiomyopathy type compared to the control. Proteomic characteristics were further evaluated in accordance with clinical and pathological findings. RESULTS: The principal component analysis score plot showed that the controls, DCM, and HCM clustered well. However, myocarditis samples exhibited scattered distribution. IPA revealed the downregulation of oxidative phosphorylation and upregulation of the sirtuin signaling pathway in both DCM and HCM. Various inflammatory pathways were upregulated in myocarditis with the downregulation of Rho GDP dissociation inhibitors. The molecular pathophysiology identified by extensive proteomic analysis represented the clinical and pathological properties of each cardiomyopathy with abundant proteomes. CONCLUSIONS: Different etiologies of non-ischemic cardiomyopathies in advanced HF exhibit distinct proteomic expression despite shared pathologic findings. The benefit of tailored management strategies considering the different proteomic expressions in non-ischemic advanced HF requires further investigation.

20.
Clin Oral Investig ; 28(8): 417, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38972945

ABSTRACT

OBJECTIVES: The treatment of fractures prioritizes the restoration of functionality through the realignment of fractured segments. Conventional methods, such as titanium plates, have been employed for this purpose; however, certain limitations have been observed, leading to the development of patient-specific plates. Furthermore, recent advancements in digital technology in dentistry enable the creation of virtual models and simulations of surgical procedures. The aim was to assess the clinical effectiveness of patient-specific plates utilizing digital technology in treating mandibular fractures compared to conventional titanium plates. MATERIALS AND METHODS: Twenty patients diagnosed with mandibular fractures were included and randomly assigned to either the study or control groups. The surgical procedure comprised reduction and internal fixation utilizing patient-specific plates generated through virtual surgery planning with digital models for the study group, while the control group underwent the same procedure with conventional titanium plates. Assessment criteria included the presence of malunion, infection, sensory disturbance, subjective occlusal disturbance and occlusal force in functional maximum intercuspation (MICP). Statistical analysis involved using the Chi-square test and one-way repeated measures analysis of variance. RESULTS: All parameters showed no statistically significant differences between the study and control groups, except for the enhancement in occlusal force in functional MICP, where a statistically significant difference was observed (p = 0.000). CONCLUSION: Using patient-specific plates using digital technology has demonstrated clinical effectiveness in treating mandibular fractures, offering advantages of time efficiency and benefits for less experienced surgeons. CLINICAL RELEVANCE: Patient-specific plates combined with digital technology can be clinically effective in mandibular fracture treatment.


Subject(s)
Bone Plates , Fracture Fixation, Internal , Mandibular Fractures , Titanium , Humans , Mandibular Fractures/surgery , Titanium/chemistry , Male , Female , Fracture Fixation, Internal/methods , Fracture Fixation, Internal/instrumentation , Adult , Treatment Outcome , Middle Aged , Computer-Aided Design , Surgery, Computer-Assisted/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...