Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7008, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38523148

ABSTRACT

In the semiconductor manufacturing process, when conducting inductively coupled plasma-reactive ion etching in challenging environments, both wafers and the ceramic components comprising the chamber's interior can be influenced by plasma attack. When ceramic components are exposed to long-term plasma environments, the eroded components must be replaced. Furthermore, non-volatile reactants can form and settle on semiconductor chips, acting as contaminants and reducing semiconductor production yield. Therefore, for semiconductor processing equipment parts to be utilized, it is necessary that they exhibit minimized generation of contaminant particles and not deviate significantly from the composition of conventionally used Al2O3 and Y2O3; part must also last long in various physicochemical etching environment. Herein, we investigate the plasma etching behavior of Y2O3-Y4Al2O9 (YAM) composites with a variety of mixing ratios under different gas fraction conditions. The investigation revealed that the etching rates and changes in surface roughness for these materials were significantly less than those of Y2O3 materials subjected to both chemical and physical etching. Microstructure analysis was conducted to demonstrate the minimization of crater formation. Mechanical properties of the composite were also analyzed. The results show that the composite can be commercialized as next-generation ceramic component in semiconductor processing equipment applications.

2.
ACS Omega ; 8(36): 32450-32457, 2023 Sep 12.
Article in English | MEDLINE | ID: mdl-37720774

ABSTRACT

In the current and next-generation Si-based semiconductor manufacturing processes, amorphous carbon layer (ACL) hard masks are garnering considerable attention for high-aspect-ratio (HAR) etching due to their outstanding physical properties. However, a current limitation is the lack of research on the etching characteristics of ACL hard masks under plasma etching conditions. Given the significant impact of hard mask etching on device quality and performance, a deeper understanding of the etching characteristics of ACL is necessary. This study aims to investigate the role of oxygen in the etching characteristics of an ACL hard mask in a complex gas mixture plasma etching process. Our results show that a small change of oxygen concentration (3.5-6.5%) can significantly alter the etch rate and profile of the ACL hard mask. Through our comprehensive plasma diagnostics and wafer-processing results, we have also proven a detailed mechanism for the role of the oxygen gas. This research provides a solution for achieving an outstanding etch profile in ACL hard masks with sub-micron scale and emphasizes the importance of controlling the oxygen concentration to optimize the plasma conditions for the desired etching characteristics.

3.
Nanoscale ; 13(23): 10356-10364, 2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34105564

ABSTRACT

Crystalline silicon nanoparticles at the nanometer scale have been attracting great interest in many different optoelectronic applications such as photovoltaic and light-emitting-diode devices. Formation, crystallization, and size control of silicon nanoparticles in nonharsh and nontoxic environments are highly required to achieve outstanding optoelectronic characteristics. The existing methods require high temperature, use of HF solution, and an additional process for the uniform redistribution of nanoparticles on the substrate and there are difficulties in controlling the size. Herein, we report a new self-assembly method that applies the controlled extremely low plasma ion energy near the sputtering threshold energy in rare gas environments as nonharsh and nontoxic environments. This method produces silicon nanoparticles by crystallization nucleation directly at the surface of the amorphous film via plasma surface interactions. It is evidently observed that the nucleation and growth rates of the crystalline silicon nanoparticles are promoted by the enhanced plasma ion energy. The crystalline silicon nanoparticle size is tailored to the nanometer scale by the plasma ion energy control.

4.
Rev Sci Instrum ; 83(1): 013510, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22299954

ABSTRACT

This paper proposes a new method for cutoff probe using a nanosecond impulse generator and an oscilloscope, instead of a network analyzer. The nanosecond impulse generator supplies a radiating signal of broadband frequency spectrum simultaneously without frequency sweeping, while frequency sweeping method is used by a network analyzer in a previous method. The transmission spectrum (S21) was obtained through a Fourier analysis of the transmitted impulse signal detected by the oscilloscope and was used to measure the electron density. The results showed that the transmission frequency spectrum and the electron density obtained with a new method are very close to those obtained with a previous method using a network analyzer. And also, only 15 ns long signal was necessary for spectrum reconstruction. These results were also compared to the Langmuir probe's measurements with satisfactory results. This method is expected to provide not only fast measurement of absolute electron density, but also function in other diagnostic situations where a network analyzer would be used (a hairpin probe and an impedance probe) by replacing the network analyzer with a nanosecond impulse generator and an oscilloscope.

SELECTION OF CITATIONS
SEARCH DETAIL
...