Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36984984

ABSTRACT

Microwave sensors have attracted interest as non-destructive metal crack detection (MCD) devices due to their low cost, simple fabrication, potential miniaturization, noncontact nature, and capability for remote detection. However, the development of multi-crack sensors of a suitable size and quality factor (Q-factor) remains a challenge. In the present study, we propose a multi-MCD sensor that combines a higher-mode substrate-integrated waveguide (SIW) and complementary split-ring resonators (CSRRs). In order to increase the Q-factor, the device is miniaturized; the MCD is facilitated; and two independent CSRRs are loaded onto the SIW, where the electromagnetic field is concentrated. The concentrated electromagnetic field of the SIW improves the Q-factor of the CSRRs, and each CSRR creates its own resonance and produces a miniaturizing effect by activating the sensor below the cut-off frequency of the SIW. The proposed multi-MCD sensor is numerically and experimentally demonstrated for cracks with different widths and depths. The fabricated sensor with a TE20-mode SIW and CSRRs is able to efficiently detect two sub-millimeter metal cracks simultaneously with a high Q-factor of 281.

2.
J Environ Manage ; 259: 110089, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-31929033

ABSTRACT

Microwaves (MW) have great potential for sludge solubilization, and carbon materials can act as good microwave absorbers and heat transfer media because of their high dielectric loss tangent and thermal conductivity. In this study, carbon nanotube-coated MW vessels were developed by preparing a silane-CNT mixture and spray coating. In addition, sludge solubilization by microwave irradiation was performed to evaluate the effects of the CNT-coating at different initial total suspended solid (TSS) concentrations, target temperatures, and MW irradiation times in the uncoated and CNT-coated MW vessels. The sludge solubilization efficiency increased with increasing MW irradiation time and temperature and followed a first-order reaction in both vessels. However, the energy requirement to maintain the temperature was reduced in the CNT-coated MW vessel compared to the uncoated vessel. In addition, the Arrhenius equation revealed the catalytic site in the CNT-coated MW vessel to have a temperature of around 130 °C at an average sludge temperature of 100 °C. The maximum chemical oxygen demand (COD) solubilization and soluble COD (sCOD) increase per MW energy used were 1.64 and 1.67 times higher in the CNT-coated MW vessel than in the uncoated vessel, respectively. The increase in soluble total nitrogen and phosphorus in the CNT-coated MW vessel was attributed to cell wall destruction and intracellular protoplast dissolution, because of the acceleration of the MW thermal effect and high conductivity of CNTs, as well as the MW-induced cell wall and membrane disruption by hot spots on the CNT surface. This suggests that CNTs can be applied to increase the energy efficiency in MW-based pretreatment methods.


Subject(s)
Nanotubes, Carbon , Sewage , Biological Oxygen Demand Analysis , Microwaves , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...