Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Rapid Commun ; 45(8): e2300675, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38163327

ABSTRACT

Despite their industrial ubiquity, polyolefin-polyacrylate block copolymers are challenging to synthesize due to the distinct polymerization pathways necessary for respective blocks. This study utilizes MILRad, metal-organic insertion light-initiated radical polymerization, to synthesize polyolefin-b-poly(methyl acrylate) copolymer by combining palladium-catalyzed insertion-coordination polymerization and atom transfer radical polymerization (ATRP). Brookhart-type Pd complexes used for the living polymerization of olefins are homolytically cleaved by blue-light irradiation, generating polyolefin-based macroradicals, which are trapped with functional nitroxide derivatives forming ATRP macroinitiators. ATRP in the presence of Cu(0), that is, supplemental activators and reducing agents , is used to polymerize methyl acrylate. An increase in the functionalization efficiency of up to 71% is demonstrated in this study by modifying the light source and optimizing the radical trapping condition. Regardless of the radical trapping efficiency, essentially quantitative chain extension of polyolefin-Br macroinitiator with acrylates is consistently demonstrated, indicating successful second block formation.


Subject(s)
Acrylic Resins , Polyenes , Polymerization , Polyenes/chemistry , Polyenes/chemical synthesis , Acrylic Resins/chemistry , Acrylic Resins/chemical synthesis , Catalysis , Polymers/chemistry , Polymers/chemical synthesis , Palladium/chemistry , Molecular Structure , Acrylates/chemistry , Light
2.
ACS Macro Lett ; 12(4): 475-480, 2023 Apr 18.
Article in English | MEDLINE | ID: mdl-36971570

ABSTRACT

Van der Waals-driven self-healing in copolymers with "lock-and-key" architecture has emerged as a concept to endow engineering-type polymers with the capacity to recover from structural damage. Complicating the realization of "lock-and-key"-enabled self-healing is the tendency of copolymers to form nonuniform sequence distributions during polymerization reactions. This limits favorable site interactions and renders the evaluation of van der Waals-driven healing difficult. Here, methods for the synthesis of lock-and-key copolymers with prescribed sequence were used to overcome this limitation and enable the deliberate synthesis of "lock-and-key" architectures most conducive to self-healing. The effect of molecular sequence on the material's recovery behavior was evaluated for the particular case of three poly(n-butyl acrylate/methyl methacrylate) [P(BA/MMA)] copolymers with similar molecular weights, dispersity, and overall composition but with different sequences: alternating (alt), statistical (stat), and gradient (grad). They were synthesized using atom transfer radical polymerization (ATRP). Copolymers with alt and stat sequence displayed a 10-fold increase of recovery rate compared to the grad copolymer variant despite a similar overall glass transition temperature. Investigation with small-angle neutron scattering (SANS) revealed that rapid property recovery is contingent on a uniform microstructure of copolymers in the solid state, thus avoiding the pinning of chains in glassy MMA-rich cluster regions. The results delineate strategies for the deliberate design and synthesis of engineering polymers that combine structural and thermal stability with the ability to recover from structural damage.

3.
ACS Macro Lett ; 11(10): 1217-1223, 2022 Oct 18.
Article in English | MEDLINE | ID: mdl-36194204

ABSTRACT

Poly(methyl methacrylate/n-butyl acrylate) [P(MMA/BA)] copolymer with an alternating structure was synthesized via an activator regenerated by electron transfer (ARGET) atom transfer radical (co)polymerization (ATRP) of 2-ethylfenchyl methacrylate (EFMA) and n-butyl acrylate (BA) with subsequent postpolymerization modifications (PPM). Due to the steric hindrance of the bulky pendant group of EFMA, as well as the low reactivity ratio of BA in copolymerization with methacrylates, copolymerization of EFMA and BA generated a copolymer with a high content of alternating dyads. A subsequent PPM procedure of the alternating EFMA/BA copolymer was comprised of the hydrolysis of a tertiary ester by trifluoroacetic acid and methylation by (trimethylsilyl)diazomethane. After the modifications, the architecture of the obtained alternating MMA/BA copolymers was compared with gradient and statistical copolymers with overall similar compositions, molecular weights, and dispersities. 13C NMR indicated the absence of either MMA/MMA/MMA or BA/BA/BA sequences, in contrast to an abundance of homotriads in either the statistical or especially in the gradient copolymer. All three copolymers had similar glass transition temperatures, as measured by differential scanning calorimetry (DSC), but the alternating copolymer had the narrowest range of glass transition.


Subject(s)
Diazomethane , Methacrylates , Acrylates , Esters , Methacrylates/chemistry , Methylmethacrylates , Polymerization , Polymers , Trifluoroacetic Acid
4.
ACS Macro Lett ; 11(3): 376-381, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35575360

ABSTRACT

Despite advances in photochemical atom transfer radical polymerization (photoATRP), these systems often rely on the use of UV light for the activation/generation of the copper-based catalytic species. To circumvent the problems associated with the UV light, we developed a dual photoredox catalytic system to mediate photoinduced ATRP under red-light irradiation. The catalytic system is comprised of a Cu catalyst to control the polymerization via ATRP equilibrium and a photocatalyst, such as zinc(II) tetraphenylporphine or zinc(II) phthalocyanine, to generate the activator CuI species under red-light irradiation. In addition, this system showed oxygen tolerance due to the consumption of oxygen in the photoredox reactions, yielding well-controlled polymerizations without the need for deoxygenation processes.


Subject(s)
Copper , Light , Catalysis , Oxygen , Polymerization
SELECTION OF CITATIONS
SEARCH DETAIL
...