Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Article in English | MEDLINE | ID: mdl-39010759

ABSTRACT

The efficiency of copper indium gallium selenide (CIGS) solar cells that use transparent conductive oxide (TCO) as the top electrode decreases significantly as the device area increases owing to the poor electrical properties of TCO. Therefore, high-efficiency, large-area CIGS solar cells require the development of a novel top electrode with high transmittance and conductivity. In this study, a microgrid/TCO hybrid electrode is designed to minimize the optical and resistive losses that may occur in the top electrode of a CIGS solar cell. In addition, the buffer layer of the CIGS solar cells is changed from the conventional CdS buffer to a dry-processed wide-band gap ZnMgO (ZMO) buffer, resulting in increased device efficiency by minimizing parasitic absorption in the short-wavelength region. By optimizing the combination of ZMO buffer and the microgrid/TCO hybrid electrode, a device efficiency of up to 20.5% (with antireflection layers) is achieved over a small device area of 5 mm × 5 mm (total area). Moreover, CIGS solar cells with an increased device area of up to 20 mm × 70 mm (total area) exhibit an efficiency of up to 19.7% (with antireflection layers) when a microgrid/TCO hybrid electrode is applied. Thus, this study demonstrates the potential for high-efficiency, large-area CIGS solar cells with novel microgrid electrodes.

2.
Small ; : e2402935, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38809078

ABSTRACT

Antimony selenosulfide (Sb2(S,Se)3) has recently emerged as a promising light-absorbing material, attributed to its tunable photovoltaic properties, low toxicity, and robust environmental stability. However, despite these advantages, the current record efficiency for Sb2(S,Se)3 solar cells significantly lags behind their Shockley-Queisser limit, especially when compared to other well-established chalcogenide-based thin-film solar cells, such as CdTe and Cu(In,Ga)Se2. This underperformance primarily arises from the formation of unfavorable defects, predominately located at deep energy levels, which act as recombination centers, thereby limiting the potential for performance enhancement in Sb2(S,Se)3 solar cells. Specifically, deep-level defects, such as sulfur vacancy (VS), have a lower formation energy, leading to severe non-radiative recombination and compromising device performance. To address this challenge, thioacetamide (TA), a sulfur-containing additive is introduced, into the precursor solution for the hydrothermal deposition of Sb2(S,Se)3. This results indicate that the incorporation of TA helps in passivating deep-level defects such as sulfur vacancies and in suppressing the formation of large voids within the Sb2(S,Se)3 absorber. Consequently, Sb2(S,Se)3 solar cells, with reduced carrier recombination and improved film quality, achieved a power conversion efficiency of 9.04%, with notable improvements in open-circuit voltage and fill factor. This work provides deeper insights into the passivation of deep-level donor-like VS defects through the incorporation of a sulfur-containing additive, highlighting pathways to enhance the photovoltaic performance of Sb2(S,Se)3 solar cells.

3.
Front Cell Dev Biol ; 12: 1344070, 2024.
Article in English | MEDLINE | ID: mdl-38440076

ABSTRACT

The lymphatic vasculature regulates lung homeostasis through drainage of fluid and trafficking of immune cells and plays a key role in the response to lung injury in several disease states. We have previously shown that lymphatic dysfunction occurs early in the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke (CS) and that this is associated with increased thrombin and fibrin clots in lung lymph. However, the direct effects of CS and thrombin on lymphatic endothelial cells (LECs) in COPD are not entirely clear. Studies of the blood vasculature have shown that COPD is associated with increased thrombin after CS exposure that causes endothelial dysfunction characterized by changes in the expression of coagulation factors and leukocyte adhesion proteins. Here, we determined whether similar changes occur in LECs. We used an in vitro cell culture system and treated human lung microvascular lymphatic endothelial cells with cigarette smoke extract (CSE) and/or thrombin. We found that CSE treatment led to decreased fibrinolytic activity in LECs, which was associated with increased expression of plasminogen activator inhibitor 1 (PAI-1). LECs treated with both CSE and thrombin together had a decreased expression of tissue factor pathway inhibitor (TFPI) and increased expression of adhesion molecules. RNA sequencing of lung LECs isolated from mice exposed to CS also showed upregulation of prothrombotic and inflammatory pathways at both acute and chronic exposure time points. Analysis of publicly available single-cell RNA sequencing of LECs as well as immunohistochemical staining of lung tissue from COPD patients supported these data and showed increased expression of inflammatory markers in LECs from COPD patients compared to those from controls. These studies suggest that in parallel with blood vessels, the lymphatic endothelium undergoes inflammatory changes associated with CS exposure and increased thrombin in COPD. Further research is needed to unravel the mechanisms by which these changes affect lymphatic function and drive tissue injury in COPD.

4.
Plant J ; 117(4): 1099-1114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37983636

ABSTRACT

Formation of secondary cell wall (SCW) is tightly regulated spatiotemporally by various developmental and environmental signals. Successful fine-tuning of the trade-off between SCW biosynthesis and stress responses requires a better understanding of how plant growth is regulated under environmental stress conditions. However, the current understanding of the interplay between environmental signaling and SCW formation is limited. The lipid-derived plant hormone jasmonate (JA) and its derivatives are important signaling components involved in various physiological processes including plant growth, development, and abiotic/biotic stress responses. Recent studies suggest that JA is involved in SCW formation but the signaling pathway has not been studied for how JA regulates SCW formation. We tested this hypothesis using the transcription factor MYB46, a master switch for SCW biosynthesis, and JA treatments. Both the transcript and protein levels of MYB46, a master switch for SCW formation, were significantly increased by JA treatment, resulting in the upregulation of SCW biosynthesis. We then show that this JA-induced upregulation of MYB46 is mediated by MYC2, a central regulator of JA signaling, which binds to the promoter of MYB46. We conclude that this MYC2-MYB46 module is a key component of the plant response to JA in SCW formation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Transcription Factors/metabolism , Cyclopentanes/pharmacology , Cyclopentanes/metabolism , Oxylipins/pharmacology , Oxylipins/metabolism , Cell Wall/metabolism , Gene Expression Regulation, Plant , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism
5.
J Microbiol Biotechnol ; 34(2): 296-305, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38073404

ABSTRACT

Peach tree gummosis is a botanical anomaly distinguished by the secretion of dark-brown gum from the shoots of peach trees, and Botryosphaeria dothidea has been identified as one of the fungal species responsible for its occurrence. In South Korea, approximately 80% of gummosis cases are linked to infections caused by B. dothidea. In this study, we isolated microbes from the soil surrounding peach trees exhibiting antifungal activity against B. dothidea. Subsequently, we identified several bacterial strains as potential candidates for a biocontrol agent. Among them, Bacillus velezensis KTA01 displayed the most robust antifungal activity and was therefore selected for further analysis. To investigate the antifungal mechanism of B. velezensis KTA01, we performed tests to assess cell wall degradation and siderophore production. Additionally, we conducted reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis based on whole-genome sequencing to confirm the presence of genes responsible for the biosynthesis of lipopeptide compounds, a well-known characteristic of Bacillus spp., and to compare gene expression levels. Moreover, we extracted lipopeptide compounds using methanol and subjected them to both antifungal activity testing and high-performance liquid chromatography (HPLC) analysis. The experimental findings presented in this study unequivocally demonstrate the promising potential of B. velezensis KTA01 as a biocontrol agent against B. dothidea KACC45481, the pathogen responsible for causing peach tree gummosis.


Subject(s)
Antifungal Agents , Bacillus , Antifungal Agents/pharmacology , Antifungal Agents/chemistry , Bacillus/genetics , Bacteria/metabolism , Lipopeptides/metabolism
6.
bioRxiv ; 2023 Nov 02.
Article in English | MEDLINE | ID: mdl-37961242

ABSTRACT

Chronic Obstructive Pulmonary Disease (COPD) is a heterogeneous disease that is characterized by many clinical phenotypes. One such phenotype of COPD is defined by emphysema, pathogenic lung tertiary lymphoid organs (TLOs), and autoantibody production. We have previously shown that lymphatic dysfunction can cause lung TLO formation and lung injury in mice. We now sought to uncover whether underlying lymphatic dysfunction may be a driver of lung injury in cigarette smoke (CS)-induced COPD. We found that lung TLOs in mice with lymphatic dysfunction produce autoantibodies and are associated with a lymphatic endothelial cell subtype that expresses antigen presentation genes. Mice with underlying lymphatic dysfunction develop increased emphysema after CS exposure, with increased size and activation of TLOs. CS further increased autoantibody production in mice with lymphatic dysfunction. B-cell blockade prevented TLO formation and decreased lung injury after CS in mice with lymphatic dysfunction. Using tissue from human COPD patients, we also found evidence of a lymphatic gene signature that was specific to patients with emphysema and prominent TLOs compared to COPD patients without emphysema. Taken together, these data suggest that lymphatic dysfunction may underlie lung injury in a subset of COPD patients with an autoimmune emphysema phenotype.

7.
JCI Insight ; 8(16)2023 08 22.
Article in English | MEDLINE | ID: mdl-37606038

ABSTRACT

Alveolar epithelial type II (AEC2) cells strictly regulate lipid metabolism to maintain surfactant synthesis. Loss of AEC2 cell function and surfactant production are implicated in the pathogenesis of the smoking-related lung disease chronic obstructive pulmonary disease (COPD). Whether smoking alters lipid synthesis in AEC2 cells and whether altering lipid metabolism in AEC2 cells contributes to COPD development are unclear. In this study, high-throughput lipidomic analysis revealed increased lipid biosynthesis in AEC2 cells isolated from mice chronically exposed to cigarette smoke (CS). Mice with a targeted deletion of the de novo lipogenesis enzyme, fatty acid synthase (FASN), in AEC2 cells (FasniΔAEC2) exposed to CS exhibited higher bronchoalveolar lavage fluid (BALF) neutrophils, higher BALF protein, and more severe airspace enlargement. FasniΔAEC2 mice exposed to CS had lower levels of key surfactant phospholipids but higher levels of BALF ether phospholipids, sphingomyelins, and polyunsaturated fatty acid-containing phospholipids, as well as increased BALF surface tension. FasniΔAEC2 mice exposed to CS also had higher levels of protective ferroptosis markers in the lung. These data suggest that AEC2 cell FASN modulates the response of the lung to smoke by regulating the composition of the surfactant phospholipidome.


Subject(s)
Pulmonary Disease, Chronic Obstructive , Pulmonary Surfactants , Animals , Mice , Fatty Acid Synthase, Type II , Fatty Acid Synthases/genetics , Surface-Active Agents , Epithelial Cells , Homeostasis , Lipids
8.
Small ; 19(40): e2304129, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37264689

ABSTRACT

A barcode magnetic nanowire typically comprises a multilayer magnetic structure in a single body with more than one segment type. Interestingly, due to selective functionalization and novel interactions between the layers, it has attracted significant attention, particularly in bioengineering. However, analyzing the magnetic properties at the individual nanowire level remains challenging. Herein, the characterization of a single magnetic nanowire is investigated at room temperature under ambient conditions based on magnetic images obtained via wide-field quantum microscopy with nitrogen-vacancy centers in diamond. Consequently, critical magnetic properties of a single nanowire can be extracted, such as saturation magnetization and coercivity, by comparing the experimental result with that of micromagnetic simulation. This study opens up the possibility for a versatile in situ characterization method suited to individual magnetic nanowires.

9.
Food Sci Anim Resour ; 43(3): 512-530, 2023 May.
Article in English | MEDLINE | ID: mdl-37181220

ABSTRACT

The present study evaluated the effects of fermented whey protein using kimchi lactic acid bacteria Lactobacillus casei DK211 on skeletal muscle mass, muscle strength, and physical performance in healthy middle-aged males performing regular resistance exercises. Effective protein supplementation and regular exercise are two important factors for improving muscle health. Therefore, in this study, the effects of consuming fermented whey protein twice a day were investigated and compared with that of non-fermented supplementation. Forty-eight males (average age 44.8) were randomly assigned to two groups: Fermented whey protein supplementation (FWPS) and non-fermented whey protein concentration supplementation (WPCS) groups. Each group ingested 37 g of FWPS or WPCS twice a day for eight weeks. Body composition, muscle strength, and physical performance were assessed pre- and post-intervention. Independent t-tests or chi-square tests for the categorical variables were performed for analyzing the observations. FWPS was effective in promoting the physical performance in dynamic balance measurement and muscle health, indicated through the increment in grip strength (left), upper arm circumference, and flat leg circumference from the baseline. However, similar improvements were not observed in the WPCS group. These results imply that whey protein fermented by L. casei DK211 is an effective protein supplement for enhancing muscle health in males performing regular resistance exercises.

10.
Front Pharmacol ; 14: 1114410, 2023.
Article in English | MEDLINE | ID: mdl-36998613

ABSTRACT

Objectives: This study aimed to evaluate the clinical efficacy and safety of PE extracts developed for the purpose of relieving pain and improving knee joint function on semi-healthy people with mild knee joint pain. Methods: A randomized, double-blind, two-arm, single-center, placebo-controlled clinical trial was conducted. Individuals with knee joint pain and a visual analogue scale (VAS) score < 50 mm were included in the study, and participants with radiological arthritis were excluded. Participants were administered either PFE or a placebo capsule (700 mg, twice a day) orally for eight weeks. The comparisons of the changed VAS score and Western Ontario and McMaster Universities Osteoarthritis (WOMAC) scores between the PFE and placebo groups were primary outcomes, while the five inflammation-related laboratory tests including cartilage oligomeric matrix protein, cyclooxygenase-2, neutrophil and lymphocyte ratio, high sensitive C-reactive protein, and erythrocyte sedimentation rate were secondary outcomes. Also, a safety assessment was done. Results: Eighty participants (mean age, 38.4 ± 14.0, male: female, 28:52) were enrolled; 75 completed the trial (PFE 36 and placebo 39). After eight weeks, both VAS and WOMAC scores were reduced in the PFE and placebo groups. The changed scores were significantly higher in the PFE group compared to the placebo group: 19.6 ± 10.9 vs. 6.8 ± 10.5; VAS scores (p < 0.001), and 20.5 ± 14.7 vs. 9.3 ± 16.5; total WOMAC scores (p < 0.01) including the sub-scores for pain, stiffness, and functions. No significant changes were reported in the five inflammation-related laboratory parameters. All adverse events were considered minor and unlikely to result from the intervention. Conclusion: Eight weeks of PFE intake was more effective than placebo in reducing knee joint pain and improving knee joint function in sub-healthy people with mild knee joint pain, and there were no major safety concerns. Clinical Trial Registration: https://cris.nih.go.kr/cris/search/detailSearch.do?search_lang=E&focus=reset_12&search_page=M&pageSize=10&page=undefined&seq=23101&status=5&seq_group=19745, identifier CRIS: KCT0007219.

12.
Am J Respir Cell Mol Biol ; 68(5): 511-522, 2023 05.
Article in English | MEDLINE | ID: mdl-36657060

ABSTRACT

Cigarette smoke (CS) exposure is a risk factor for many chronic diseases, including chronic obstructive pulmonary disease, but the mechanism by which smoke exposure can alter homeostasis and bring about chronic inflammation is poorly understood. Here, we showcase a novel role for smoke in regulating long noncoding RNAs, showing that it activates lincRNA-Cox2, which we previously characterized as functional in inflammatory regulation. Exposing lincRNA-Cox2 murine models to smoke in vivo confirmed lincRNA-Cox2 as a regulator of inflammatory gene expression in response to smoke both systemically and within the lung. We also report that lincRNA-Cox2 negatively regulates genes in smoked bone marrow-derived macrophages exposed to LPS stimulation. In addition to the effects on long noncoding RNAs, we also report dysregulated transcription and splicing of inflammatory protein-coding genes in the bone marrow niche after CS exposure in vivo. Collectively, this work provides insights into how innate immune signaling from gene expression to splicing is altered after in vivo exposure to CS and highlights an important new role for lincRNA-Cox2 in regulating immune genes after smoke exposure.


Subject(s)
Pulmonary Disease, Chronic Obstructive , RNA, Long Noncoding , Mice , Animals , RNA, Long Noncoding/genetics , Macrophages/metabolism , Inflammation/metabolism , Lung/metabolism , Pulmonary Disease, Chronic Obstructive/metabolism
13.
Mol Biol Rep ; 50(1): 31-41, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36301462

ABSTRACT

BACKGROUND: Plants have evolved to adapt to the ever-changing environments through various morphological changes. An organism anticipates and responds to changes in its environment via the circadian clock, an endogenous oscillator lasting approximately 24 h. The circadian clock regulates various physiological processes, such as hypocotyl elongation in Arabidopsis thaliana. Phytochrome interacting factor 4 (PIF4), a member of the bHLH protein family, plays a vital hub role in light signaling pathways and temperature-mediated growth response mechanisms. PIF4 is controlled by the circadian clock and interacts with several factors. However, the components that regulate PIF4 transcription and activity are not clearly understood. METHODS AND RESULTS: Here, we showed that the Arabidopsis thaliana GATA25 (AtGATA25) transcription factor plays a fundamental role in promoting hypocotyl elongation by positively regulating the expression of PIF4. This was confirmed to in the loss-of-function mutant of AtGATA25 via CRISPR/Cas9-mediated gene editing, which inhibits hypocotyl elongation and decreases the expression of PIF4. In contrast, the overexpression of AtGATA25 in transgenic plants resulted in increased expression of PIF4 and enhanced hypocotyl elongation. To better understand AtGATA25-mediated PIF4 transcriptional regulation, we analyzed the promoter region of the target gene PIF4 and characterized the role of GATA25 through transcriptional activation analysis. CONCLUSION: Our findings suggest a novel role of the AtGATA25 transcription factor in hypocotyl elongation.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Phytochrome , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Hypocotyl/genetics , CRISPR-Cas Systems/genetics , Transcription Factors/genetics , Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Plant/genetics
14.
Food Chem ; 399: 133958, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36027812

ABSTRACT

The aim of study was to optimize an QuEChERS extraction procedure for simultaneous determination of organic pollutants in aquaculture products. The QuEChERS extracts were measured using LC-HRMS. The target contaminants include 32 pesticides and 20 pharmaceuticals which have not been regulated for the products in Korea. The method was validated according to CODEX guideline (CAC/GL 71-2009). LOD and LOQ for all analytes ranged from 0.1 to 2 µg/kg and from 0.5 to 5 µg/kg, respectively. Intra-day (n = 5) and inter-day (n = 9) accuracy and precision were evaluated with the guideline. The validated method was applied to aquaculture products (n = 303). As a result, 14 pesticides and 8 pharmaceuticals were quantified. Fluxapyroxad, a fungicide frequently detected in domestic surface waters, was found with relatively higher concentration in 17 out of 23 species. It proves that a hydrophobic inland contaminant can be accumulated in the aquaculture products.


Subject(s)
Environmental Pollutants , Pesticide Residues , Pesticides , Aquaculture , Environmental Pollutants/analysis , Pesticide Residues/analysis , Pesticides/analysis , Pharmaceutical Preparations/analysis , Tandem Mass Spectrometry/methods
15.
ACS Appl Mater Interfaces ; 14(47): 52825-52837, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36346616

ABSTRACT

Chalcopyrite-based materials for photovoltaic devices tend to exhibit complex structural imperfections originating from their polycrystalline nature; nevertheless, properly controlled devices are surprisingly irrelevant to them in terms of resulting device performances. The present work uses atom probe tomography to characterize co-evaporated high-quality Cu(In,Ga)Se2 (CIGS) films on flexible polyimide substrates either with or without doping with Na or doping with Na followed by K via a post-deposition treatment. The intent is to elucidate the unique characteristics of the grain boundaries (GBs) in CIGS, in particular the correlations/anti-correlations between matrix elements and the alkali dopants. Various compositional fluctuations are identified at GBs irrespective of the presence of alkali elements. However, [Cu-poor and Se/In,Ga-rich] GBs are significantly more common than [Cu-rich and Se/In,Ga-poor] ones. In addition, the anti-correlations between Cu and the other matrix elements are found to show not only regular trends among themselves but also the association with the degree of alkali segregation at GBs. The Na and K concentrations exhibited a correlation at the GBs but not in the intragrain regions. Density functional theory calculations are used to explain the compositional fluctuations and alkali segregation at the GBs. Our experimental and theoretical findings not only reveal the benign or beneficial characteristics of the GBs of CIGS but also provide a fundamental understanding of the GB chemistry in CIGS-based materials.

16.
ACS Appl Mater Interfaces ; 14(30): 34697-34705, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35856522

ABSTRACT

An efficient carrier transport is essential for enhancing the performance of thin-film solar cells, in particular Cu(In,Ga)Se2 (CIGS) solar cells, because of their great sensitivities to not only the interface but also the film bulk. Conventional methods to investigate the outcoming carriers and their transport properties measure the current and voltage either under illumination or dark conditions. However, the evaluation of current and voltage changes along the cross-section of the devices presents several limitations. To mitigate this shortcoming, we prepared gently etched devices and analyzed their properties using micro-Raman scattering spectroscopy, Kelvin probe force microscopy, and photoluminescence measurements. The atomic distributions and microstructures of the devices were investigated, and the defect densities in the device bulk were determined via admittance spectroscopy. The effects of Ga grading on the charge transport at the CIGS-CdS interface were categorized into various types of band offsets, which were directly confirmed by our experiments. The results indicated that reducing open-circuit voltage loss is crucial for obtaining a higher power conversion efficiency. Although the large Ga grading in the CIGS absorber induced higher defect levels, it effectuated a smaller open-circuit voltage loss because of carrier transport enhancement at the absorber-buffer interface, resulting from the optimized conduction band offsets.

17.
Cancers (Basel) ; 14(12)2022 Jun 11.
Article in English | MEDLINE | ID: mdl-35740553

ABSTRACT

The feasibility of proton minibeam radiation therapy (pMBRT) using a multislit collimator (MSC) and a scattering device was evaluated for clinical use at a clinical proton therapy facility. We fabricated, through Monte Carlo (MC) simulations, not only an MSC with a high peak-to-valley dose ratio (PVDR) at the entrance of the proton beam, to prevent radiation toxicity, but also a scattering device to modulate the PVDR in depth. The slit width and center-to-center distance of the diverging MSC were 2.5 mm and 5.0 mm at the large end, respectively, and its thickness and available field size were 100 mm and 76 × 77.5 mm2, respectively. Spatially fractionated dose distributions were measured at various depths using radiochromic EBT3 films and also tested on bacterial cells. MC simulation showed that the thicker the MSC, the higher the PVDR at the phantom surface. Dosimetric evaluations showed that lateral dose profiles varied according to the scatterer's thickness, and the depths satisfying PVDR = 1.1 moved toward the surface as their thickness increased. The response of the bacterial cells to the proton minibeams' depth was also established, in a manner similar to the dosimetric pattern. Conclusively, these results strongly suggest that pMBRT can be implemented in clinical centers by using MSC and scatterers.

18.
Cell Rep ; 38(10): 110475, 2022 03 08.
Article in English | MEDLINE | ID: mdl-35263592

ABSTRACT

Mitochondrial cardiomyopathies are fatal diseases, with no effective treatment. Alterations of heart mitochondrial function activate the mitochondrial integrated stress response (ISRmt), a transcriptional program affecting cell metabolism, mitochondrial biogenesis, and proteostasis. In humans, mutations in CHCHD10, a mitochondrial protein with unknown function, were recently associated with dominant multi-system mitochondrial diseases, whose pathogenic mechanisms remain to be elucidated. Here, in CHCHD10 knockin mutant mice, we identify an extensive cardiac metabolic rewiring triggered by proteotoxic ISRmt. The stress response arises early on, before the onset of bioenergetic impairments, triggering a switch from oxidative to glycolytic metabolism, enhancement of transsulfuration and one carbon (1C) metabolism, and widespread metabolic imbalance. In parallel, increased NADPH oxidases elicit antioxidant responses, leading to heme depletion. As the disease progresses, the adaptive metabolic stress response fails, resulting in fatal cardiomyopathy. Our findings suggest that early interventions to counteract metabolic imbalance could ameliorate mitochondrial cardiomyopathy associated with proteotoxic ISRmt.


Subject(s)
Cardiomyopathies , Mitochondrial Diseases , Animals , Cardiomyopathies/pathology , Disease Models, Animal , Mice , Mitochondria/metabolism , Mitochondrial Diseases/metabolism , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism
19.
Sci Rep ; 12(1): 5012, 2022 03 23.
Article in English | MEDLINE | ID: mdl-35322079

ABSTRACT

The lymphatic vasculature is critical for lung function, but defects in lymphatic function in the pathogenesis of lung disease is understudied. In mice, lymphatic dysfunction alone is sufficient to cause lung injury that resembles human emphysema. Whether lymphatic function is disrupted in cigarette smoke (CS)-induced emphysema is unknown. In this study, we investigated the effect of CS on lung lymphatic function. Analysis of human lung tissue revealed significant lung lymphatic thrombosis in patients with emphysema compared to control smokers that increased with disease severity. In a mouse model, CS exposure led to lung lymphatic thrombosis, decreased lymphatic drainage, and impaired leukocyte trafficking that all preceded the development of emphysema. Proteomic analysis demonstrated an increased abundance of coagulation factors in the lymph draining from the lungs of CS-exposed mice compared to control mice. In addition, in vitro assays demonstrated a direct effect of CS on lymphatic endothelial cell integrity. These data show that CS exposure results in lung lymphatic dysfunction and a shift in thoracic lymph towards a prothrombic state. Furthermore, our data suggest that lymphatic dysfunction is due to effects of CS on the lymphatic vasculature that precede emphysema. These studies demonstrate a novel component of CS-induced lung injury that occurs early in the pathogenesis of emphysema.


Subject(s)
Emphysema , Lung Injury , Pulmonary Emphysema , Smoke , Thrombosis , Tobacco Smoke Pollution , Animals , Emphysema/pathology , Humans , Lung/pathology , Lung Injury/pathology , Mice , Mice, Inbred C57BL , Proteomics , Pulmonary Emphysema/pathology , Smoke/adverse effects , Smoke Inhalation Injury , Thrombosis/pathology , Nicotiana/adverse effects , Tobacco Smoke Pollution/adverse effects
20.
Am J Cancer Res ; 12(1): 198-209, 2022.
Article in English | MEDLINE | ID: mdl-35141013

ABSTRACT

The tumor microenvironment (TME) of glioblastoma malforms (GBMs) contains tumor invasiveness factors, microvascular proliferation, migratory cancer stem cells and infiltrative tumor cells, which leads to tumor recurrence in the absence of effective drug delivery in a Blood Brain Barrier (BBB)-intact TME and radiological invisibility. Low-density lipoprotein receptor (LDLR) is abundant in the blood brain barrier and overexpressed in malignant glioma cells. This study aimed to treat the TME with transmitted proton sensitization of LDLR ligand-functionalized gold nanoparticles (ApoB@AuNPs) in an infiltrative F98 glioma rat model. BBB-crossing ApoB@AuNPs were selectively taken up in microvascular endothelial cells proliferation and pericyte invasion, which are therapeutic targets in the glioma TME. Proton sensitization treated the TME and bulk tumor volume with enhanced therapeutic efficacy by 67-75% compared to that with protons alone. Immunohistochemistry demonstrated efficient treatment of endothelial cell proliferation and migratory tumor cells of invasive microvessels in the TME with saving normal tissues. Taken together, these data indicate that the use of LDLR ligand-functionalized gold nanoparticles is a promising strategy to treat infiltrative malignant glioma while overcoming BBB crossing.

SELECTION OF CITATIONS
SEARCH DETAIL
...