Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 202
Filter
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38892403

ABSTRACT

Bakanae disease (BD), caused by the fungal pathogen Fusarium fujikuroi, is a serious threat to rice production worldwide. Breeding elite rice varieties resistant to BD requires the identification of resistance genes. Previously, we discovered a resistant quantitative trait locus (QTL), qFfR1, in a Korean japonica rice variety, Nampyeong. In this study, we fine-mapped qFfR1 with a Junam*4/Nampyeong BC3F3 population and delimited its location to a 37.1 kb region on chromosome 1. Complementation experiments with seven candidate genes in this region revealed that OsI_02728 is the gene for qFfR1. This gene encodes a protein with a typical leucine-rich repeat (LRR) receptor-like protein structure. RNA-sequencing-based transcriptomic analysis revealed that FfR1 induces the transcription of defense genes, including lignin and terpenoid biosynthesis genes, pathogenesis-related genes, and thionin genes. These results may facilitate investigations into the molecular mechanisms underlying BD resistance, including molecular patterns of Fusarium fujikuroi interacting with FfR1 and players working in signal transduction pathways downstream of FfR1, and the breeding of new BD-resistant varieties by providing a BD resistance gene with its precise selection marker. This will contribute to efficient control of BD, which is becoming more prevalent according to temperature rises due to climate change.


Subject(s)
Chromosome Mapping , Disease Resistance , Fusarium , Oryza , Plant Diseases , Quantitative Trait Loci , Oryza/genetics , Oryza/microbiology , Disease Resistance/genetics , Plant Diseases/microbiology , Plant Diseases/genetics , Fusarium/pathogenicity , Cloning, Molecular , Plant Proteins/genetics , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics
3.
ACS Appl Mater Interfaces ; 16(22): 28379-28390, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38771721

ABSTRACT

This study proposes a titanium silicide (TiSi2) recombination layer for perovskite/tunnel oxide passivated contact (TOPCon) 2-T tandem solar cells as an alternative to conventional transparent conductive oxide (TCO)-based recombination layers. TiSi2 was formed while TiO2 was made by oxidizing a Ti film deposited on the p+-Si layer. The reaction formation mechanism was proposed based on the diffusion theory supported by experimental results. The optical and electrical properties of the TiSi2 layer were optimized by controlling the initial Ti thicknesses (5-100 nm). With the initial Ti of 50 nm, the lowest reflectance and highly ohmic contact between the TiO2 and p+-Si layers with a contact resistivity of 161.48 mΩ·cm2 were obtained. In contrast, the TCO interlayer shows Schottky behavior with much higher contact resistivities. As the recombination layer of TiSi2 and the electron transport layer of TiO2 are formed simultaneously, the process steps become simpler. Finally, the MAPbI3/TOPCon tandem device yielded an efficiency of 16.23%, marking the first reported efficiency for a device including a silicide-based interlayer.

4.
Mol Biol Rep ; 51(1): 398, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38453825

ABSTRACT

The worldwide trend toward an aging population has resulted in a higher incidence of chronic conditions, such as osteoporosis. Osteoporosis, a prevalent skeletal disorder characterized by decreased bone mass and increased fracture risk, encompasses primary and secondary forms, each with distinct etiologies. Mechanistically, osteoporosis involves an imbalance between bone resorption by osteoclasts and bone formation by osteoblasts. Current pharmacological interventions for osteoporosis, such as bisphosphonates, denosumab, and teriparatide, aim to modulate bone turnover and preserve bone density. Hormone replacement therapy and lifestyle modifications are also recommended to manage the condition. While current medications offer therapeutic options, they are not devoid of limitations. Recent studies have highlighted the importance of epigenetic mechanisms, including DNA methylation and histone modifications, in regulating gene expression during bone remodeling. The use of epigenetic drugs, or epidrugs, to target these mechanisms offers a promising avenue for therapeutic intervention in osteoporosis. In this review, we comprehensively examine the recent advancements in the application of epidrugs for treating osteoporosis.


Subject(s)
Bone Density Conservation Agents , Fractures, Bone , Osteoporosis , Humans , Aged , Osteoporosis/drug therapy , Osteoporosis/genetics , Osteoporosis/metabolism , Bone Density , Fractures, Bone/genetics , Epigenesis, Genetic
5.
Mar Drugs ; 22(3)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38535478

ABSTRACT

We demonstrated the effect of Ishige okamurae extract (IOE) on the receptor activator of nuclear factor-κB ligand (RANKL)-promoted osteoclastogenesis in RAW 264.7 cells and confirmed that IOE inhibited RANKL-induced tartrate-resistant acid phosphatase (TRAP) activity and osteoclast differentiation. IOE inhibited protein expression of TRAP, metallopeptidase-9 (MMP-9), the calcitonin receptor (CTR), and cathepsin K (CTK). IOE treatment suppressed the expression of activated T cell cytoplasmic 1 and activator protein-1, thus controlling the expression of osteoclast-related factors. Moreover, IOE significantly reduced RANKL-phosphorylated extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK). It also reduced the RANKL-induced phosphorylation of NF-κB and nuclear translocation of p65. IOE inhibited Dex-induced bone loss and osteoclast-related gene expression in zebrafish larvae. HPLC analysis shows that IOE consists of 3.13% and 3.42% DPHC and IPA, respectively. Our results show that IOE has inhibitory effects on osteoclastogenesis in vitro and in vivo and is a potential therapeutic for osteoporosis.


Subject(s)
Osteogenesis , Zebrafish , Animals , Osteoclasts , Chromatography, High Pressure Liquid , Extracellular Signal-Regulated MAP Kinases , RANK Ligand
6.
Gut Microbes ; 16(1): 2319889, 2024.
Article in English | MEDLINE | ID: mdl-38391178

ABSTRACT

The gut microbiota plays a pivotal role in metabolic disorders, notably type 2 diabetes mellitus (T2DM). In this study, we investigated the synergistic potential of combining the effects of Bifidobacterium longum NBM7-1 (CKD1) with anti-diabetic medicines, LobeglitazoneⓇ (LO), SitagliptinⓇ (SI), and MetforminⓇ (Met), to alleviate hyperglycemia in a diabetic mouse model. CKD1 effectively mitigated insulin resistance, hepatic steatosis, and enhanced pancreatic ß-cell function, as well as fortifying gut-tight junction integrity. In the same way, SI-CKD1 and Met- CKD1 synergistically improved insulin sensitivity and prevented hepatic steatosis, as evidenced by the modulation of key genes associated with insulin signaling, ß-oxidation, gluconeogenesis, adipogenesis, and inflammation by qRT-PCR. The comprehensive impact on modulating gut microbiota composition was observed, particularly when combined with MetforminⓇ. This combination induced an increase in the abundance of Rikenellaceae and Alistipes related negatively to the T2DM incidence while reducing the causative species of Cryptosporangium, Staphylococcaceae, and Muribaculaceae. These alterations intervene in gut microbiota metabolites to modulate the level of butyrate, indole-3-acetic acid, propionate, and inflammatory cytokines and to activate the IL-22 pathway. However, it is meaningful that the combination of B. longum NBM7-1(CKD1) reduced the medicines' dose to the level of the maximal inhibitory concentrations (IC50). This study advances our understanding of the intricate relationship between gut microbiota and metabolic disorders. We expect this study to contribute to developing a prospective therapeutic strategy modulating the gut microbiota.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Gastrointestinal Microbiome , Insulin Resistance , Metformin , Mice , Animals , Diabetes Mellitus, Type 2/drug therapy , Up-Regulation , Diabetes Mellitus, Experimental/drug therapy , Metformin/pharmacology , Metformin/therapeutic use
7.
PLoS One ; 19(1): e0297057, 2024.
Article in English | MEDLINE | ID: mdl-38241416

ABSTRACT

BACKGROUND: Recently, we developed a chest compression device that can move the chest compression position without interruption during CPR and be remotely controlled to minimize rescuer exposure to infectious diseases. The purpose of this study was to compare its performance with conventional mechanical CPR device in a mannequin and a swine model of cardiac arrest. MATERIALS AND METHODS: A prototype of a remote-controlled automatic chest compression device (ROSCER) that can change the chest compression position without interruption during CPR was developed, and its performance was compared with LUCAS 3 in a mannequin and a swine model of cardiac arrest. In a swine model of cardiac arrest, 16 male pigs were randomly assigned into the two groups, ROSCER CPR (n = 8) and LUCAS 3 CPR (n = 8), respectively. During 5 minutes of CPR, hemodynamic parameters including aortic pressure, right atrial pressure, coronary perfusion pressure, common carotid blood flow, and end-tidal carbon dioxide partial pressure were measured. RESULTS: In the compression performance test using a mannequin, compression depth, compression time, decompression time, and plateau time were almost equal between ROSCER and LUCAS 3. In a swine model of cardiac arrest, coronary perfusion pressure showed no difference between the two groups (p = 0.409). Systolic aortic pressure and carotid blood flow were higher in the LUCAS 3 group than in the ROSCER group during 5 minutes of CPR (p < 0.001, p = 0.008, respectively). End-tidal CO2 level of the ROSCER group was initially lower than that of the LUCAS 3 group, but was higher over time (p = 0.022). A Kaplan-Meier survival analysis for ROSC also showed no difference between the two groups (p = 0.46). CONCLUSION: The prototype of a remote-controlled automated chest compression device can move the chest compression position without interruption during CPR. In a mannequin and a swine model of cardiac arrest, the device showed no inferior performance to a conventional mechanical CPR device.


Subject(s)
Cardiopulmonary Resuscitation , Heart Arrest , Male , Animals , Swine , Pilot Projects , Manikins , Heart Arrest/therapy , Pressure , Hemodynamics
8.
Article in English | MEDLINE | ID: mdl-37804432

ABSTRACT

Type 2 diabetes (T2D) is known as adult-onset diabetes, but recently, T2D has increased in the number of younger people, becoming a major clinical burden in human society. The objective of this study was to determine the effects of Bifidobacterium and Lactiplantibacillus strains derived from the feces of 20 healthy humans on T2D development and to understand the mechanism underlying any positive effects of probiotics. We found that Bifidobacterium longum NBM7-1 (Chong Kun Dang strain 1; CKD1) and Lactiplantibacillus rhamnosus NBM17-4 (Chong Kun Dang strain 2; CKD2) isolated from the feces of healthy Korean adults (n = 20) have anti-diabetic effects based on the insulin sensitivity. During the oral gavage for 8 weeks, T2D mice were supplemented with anti-diabetic drugs (1.0-10 mg/kg body weight) to four positive and negative control groups or four probiotics (200 uL; 1 × 109 CFU/mL) to groups separately or combined to the four treatment groups (n = 6 per group). While acknowledging the relatively small sample size, this study provides valuable insights into the potential benefits of B. longum NBM7-1 and L. rhamnosus NBM17-4 in mitigating T2D development. The animal gene expression was assessed using a qRT-PCR, and metabolic parameters were assessed using an ELISA assay. We demonstrated that B. longum NBM7-1 in the CKD1 group and L. rhamnosus NBM17-4 in the CKD2 group alleviate T2D development through the upregulation of IL-22, which enhances insulin sensitivity and pancreatic functions while reducing liver steatosis. These findings suggest that B. longum NBM7-1 and L. rhamnosus NBM17-4 could be the candidate probiotics for the therapeutic treatments of T2D patients as well as the prevention of type 2 diabetes.

9.
Genes (Basel) ; 14(8)2023 08 06.
Article in English | MEDLINE | ID: mdl-37628644

ABSTRACT

Tiller number is an important trait associated with yield in rice. Tiller number in Korean japonica rice was analyzed under greenhouse conditions in 160 recombinant inbred lines (RILs) derived from a cross between the temperate japonica varieties Odae and Unbong40 to identify quantitative trait loci (QTLs). A genetic map comprising 239 kompetitive allele-specific PCR (KASP) and 57 cleaved amplified polymorphic sequence markers was constructed. qTN3, a major QTL for tiller number, was identified at 132.4 cm on chromosome 3. This QTL was also detected under field conditions in a backcross population; thus, qTN3 was stable across generations and environments. qTN3 co-located with QTLs associated with panicle number per plant and culm diameter, indicating it had pleiotropic effects. The qTN3 regions of Odae and Unbong40 differed in a known functional variant (4 bp TGTG insertion/deletion) in the 5' UTR of OsTB1, a gene underlying variation in tiller number and culm strength. Investigation of variation in genotype and tiller number revealed that varieties with the insertion genotype had lower tiller numbers than those with the reference genotype. A high-resolution melting marker was developed to enable efficient marker-assisted selection. The QTL qTN3 will therefore be useful in breeding programs developing japonica varieties with optimal tiller numbers for increased yield.


Subject(s)
Oryza , Humans , Oryza/genetics , Plant Breeding , Chromosome Mapping , Quantitative Trait Loci/genetics , 5' Untranslated Regions , Republic of Korea
11.
Nanoscale ; 15(33): 13685-13691, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37555310

ABSTRACT

Metal-assisted chemical etching (MACE) has received much attention from researchers because it can be used to fabricate plasma-free anisotropic etching profiles for semiconductors. However, the etching mechanism of MACE is based on the catalytic reaction of noble metals, which restricts its use in complementary metal oxide semiconductor (CMOS) processes. To obtain process compatibility, we developed catalytic Ni after alloying it with Si as a substitute for noble metals in the MACE of Si substrates. Nickel silicide is a material commonly used as a contact electrode in CMOS processes. When NiSi was used as the catalyst, the anisotropic etching of Si with a smooth surface was successfully demonstrated. Silicidation increased the standard reduction potential of the Ni alloy and enhanced the electrochemical stability in the MACE of Si. In contrast, when pure Ni was used as the catalyst, a rough-etched surface was fabricated because of the low standard reduction potential. Based on the experimental results, the factors affecting the MACE of Si were systematically analyzed to optimize the catalytic NiSi properties. The implementation of the NiSi alloy potentially eliminates the use of noble metals in MACE and allows the technology to be adopted in contemporary CMOS processes.

12.
Biochem Biophys Res Commun ; 677: 6-12, 2023 10 15.
Article in English | MEDLINE | ID: mdl-37523894

ABSTRACT

Diffuse intrinsic pontine glioma (DIPG) is a highly aggressive pediatric brain tumor with limited therapeutic options. Here, we investigated the potential of dimethyl alpha-ketoglutarate (DMKG) as an anti-proliferative agent against DIPG and unraveled its underlying molecular mechanisms. DMKG exhibited robust inhibition of DIPG cell proliferation, colony formation, and neurosphere growth. Transcriptomic analysis revealed substantial alterations in gene expression, with upregulated genes enriched in hypoxia-related pathways and downregulated genes associated with cell division and the mitotic cell cycle. Notably, DMKG induced G1/S phase cell cycle arrest and downregulated histone H3 lysine 27 acetylation (H3K27ac) without affecting H3 methylation levels. The inhibition of AKT and ERK signaling pathways by DMKG coincided with decreased expression of the CBP/p300 coactivator. Importantly, we identified the c-MYC-p300/ATF1-p300 axis as a key mediator of DMKG's effects, demonstrating reduced binding to target gene promoters and decreased H3K27ac levels. Depletion of c-MYC or ATF1 effectively inhibited DIPG cell growth. These findings highlight the potent anti-proliferative properties of DMKG, its impact on epigenetic modifications, and the involvement of the c-MYC-p300/ATF1-p300 axis in DIPG, shedding light on potential therapeutic strategies for this devastating disease.


Subject(s)
Brain Stem Neoplasms , Diffuse Intrinsic Pontine Glioma , Glioma , Child , Humans , Histones/metabolism , Diffuse Intrinsic Pontine Glioma/genetics , Diffuse Intrinsic Pontine Glioma/metabolism , Diffuse Intrinsic Pontine Glioma/pathology , Brain Stem Neoplasms/drug therapy , Brain Stem Neoplasms/genetics , Brain Stem Neoplasms/pathology , Glioma/pathology , Gene Regulatory Networks , Epigenesis, Genetic , Cell Proliferation/genetics
13.
Adv Mater ; 35(48): e2304717, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37516451

ABSTRACT

Active matrix (AM) quantum-dot light-emitting diodes (QLEDs) driven by thin-film transistors (TFTs) have attracted significant attention for use in next-generation displays. Several challenges remain for the realisation of AM-QLEDs, such as device design, fabrication process, and integration between QLEDs and TFTs, depending on their device structures and configurations. Herein, efficient and stable AM-QLEDs are demonstrated using conventional and inverted structured QLEDs (C- and I-QLEDs, respectively) combined with facile type-convertible (p- and n-type) single-walled carbon nanotube (SWNT)-based TFTs. Based on the four possible configurations of the QLED-TFT subpixel, the performance of the SWNT TFT-driven QLEDs and the fabrication process to determine the ideal configuration are compared, taking advantage of each structure for AM-QLEDs. The QLEDs and TFTs are also optimized to maximise the performance of the AM-QLEDs-the inner shell composition of quantum dots and carrier type of TFTs-resulting in a maximum external quantum efficiency and operational lifetime (at an initial luminance of 100 cd m2 ) of 21.2% and 38 100 000 h for the C-QLED, and 19.1% and 133100000 h for the I-QLED, respectively. Finally, a 5×5 AM-QLED display array controlled using SWNT TFTs is successfully demonstrated. This study is expected to contribute to the development of advanced AM-QLED displays.

14.
Redox Biol ; 64: 102804, 2023 08.
Article in English | MEDLINE | ID: mdl-37399733

ABSTRACT

TMBIM6 is an endoplasmic reticulum (ER) protein that modulates various physiological and pathological processes, including metabolism and cancer. However, its involvement in bone remodeling has not been investigated. In this study, we demonstrate that TMBIM6 serves as a crucial negative regulator of osteoclast differentiation, a process essential for bone remodeling. Our investigation of Tmbim6-knockout mice revealed an osteoporotic phenotype, and knockdown of Tmbim6 inhibited the formation of multinucleated tartrate-resistant acid phosphatase-positive cells, which are characteristic of osteoclasts. Transcriptome and immunoblot analyses uncovered that TMBIM6 exerts its inhibitory effect on osteoclastogenesis by scavenging reactive oxygen species and preventing p65 nuclear localization. Additionally, TMBIM6 depletion was found to promote p65 localization to osteoclast-related gene promoters. Notably, treatment with N-acetyl cysteine, an antioxidant, impeded the osteoclastogenesis induced by TMBIM6-depleted cells, supporting the role of TMBIM6 in redox regulation. Furthermore, we discovered that TMBIM6 controls redox regulation via NRF2 signaling pathways. Our findings establish TMBIM6 as a critical regulator of osteoclastogenesis and suggest its potential as a therapeutic target for the treatment of osteoporosis.


Subject(s)
Bone Resorption , Membrane Proteins , Osteoclasts , Osteogenesis , Animals , Male , Mice , Bone Resorption/genetics , Cell Differentiation , Membrane Proteins/genetics , Mice, Inbred C57BL , Mice, Knockout , Osteoclasts/cytology , RANK Ligand/metabolism , Signal Transduction , Transcription Factor RelA/metabolism , Oxidation-Reduction
15.
Plants (Basel) ; 12(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37375956

ABSTRACT

Drought is being annually exacerbated by recent global warming, leading to crucial damage of crop growth and final yields. Soybean, one of the most consumed crops worldwide, has also been affected in the process. The development of a resistant cultivar is required to solve this problem, which is considered the most efficient method for crop producers. To accelerate breeding cycles, genetic engineering and high-throughput phenotyping technologies have replaced conventional breeding methods. However, the current novel phenotyping method still needs to be optimized by species and varieties. Therefore, we aimed to assess the most appropriate and effective phenotypes for evaluating drought stress by applying a high-throughput image-based method on the nested association mapping (NAM) population of soybeans. The acquired image-based traits from the phenotyping platform were divided into three large categories-area, boundary, and color-and demonstrated an aspect for each characteristic. Analysis on categorized traits interpreted stress responses in morphological and physiological changes. The evaluation of drought stress regardless of varieties was possible by combining various image-based traits. We might suggest that a combination of image-based traits obtained using computer vision can be more efficient than using only one trait for the precision agriculture.

16.
Brain Struct Funct ; 228(5): 1283-1294, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37138199

ABSTRACT

Coleoid cephalopods have a high intelligence, complex structures, and large brain. The cephalopod brain is divided into supraesophageal mass, subesophageal mass and optic lobe. Although much is known about the structural organization and connections of various lobes of octopus brain, there are few studies on the brain of cephalopod at the molecular level. In this study, we demonstrated the structure of an adult Octopus minor brain by histomorphological analyses. Through visualization of neuronal and proliferation markers, we found that adult neurogenesis occurred in the vL and posterior svL. We also obtained specific 1015 genes by transcriptome of O. minor brain and selected OLFM3, NPY, GnRH, and GDF8 genes. The expression of genes in the central brain showed the possibility of using NPY and GDF8 as molecular marker of compartmentation in the central brain. This study will provide useful information for establishing a molecular atlas of cephalopod brain.


Subject(s)
Octopodiformes , Animals , Octopodiformes/genetics , Octopodiformes/anatomy & histology , Octopodiformes/metabolism , Brain/metabolism , Neurons/metabolism , Gene Expression Profiling , Transcriptome
17.
Nanomaterials (Basel) ; 13(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37049380

ABSTRACT

A Ag:AZO electrode was used as an electrode for a self-powered solar-blind ultraviolet photodetector based on a Ag2O/ß-Ga2O3 heterojunction. The Ag:AZO electrode was fabricated by co-sputtering Ag and AZO heterogeneous targets using the structural characteristics of a Facing Targets Sputtering (FTS) system with two-facing targets, and the electrical, crystallographic, structural, and optical properties of the fabricated thin film were evaluated. A photodetector was fabricated and evaluated based on the research results that the surface roughness of the electrode can reduce the light energy loss by reducing the scattering and reflectance of incident light energy and improving the trapping phenomenon between interfaces. The thickness of the electrodes was varied from 20 nm to 50 nm depending on the sputtering time. The optoelectronic properties were measured under 254 nm UV-C light, the on/off ratio of the 20 nm Ag:AZO electrode with the lowest surface roughness was 2.01 × 108, and the responsivity and detectivity were 56 mA/W and 6.99 × 1011 Jones, respectively. The Ag2O/ß-Ga2O3-based solar-blind photodetector with a newly fabricated top electrode exhibited improved response with self-powered characteristics.

18.
ACS Nano ; 17(9): 8153-8166, 2023 05 09.
Article in English | MEDLINE | ID: mdl-37068137

ABSTRACT

Blood-brain barrier (BBB) remains one of the critical challenges in developing neurological therapeutics. Short single-stranded DNA/RNA nucleotides forming a three-dimensional structure, called aptamers, have received increasing attention as BBB shuttles for efficient brain drug delivery owing to their practical advantages over Trojan horse antibodies or peptides. Aptamers are typically obtained by combinatorial chemical technology, termed Systemic Evolution of Ligands by EXponential Enrichment (SELEX), against purified targets, living cells, or animal models. However, identifying reliable BBB-penetrating aptamers that perform efficiently under human physiological conditions has been challenging because of the poor physiological relevance in the conventional SELEX process. Here, we report a human BBB shuttle aptamer (hBS) identified using a human microphysiological system (MPS)-based SELEX (MPS-SELEX) method. A two-channel MPS lined with human brain microvascular endothelial cells (BMECs) interfaced with astrocytes and pericytes, recapitulating high-level barrier function of in vivo BBB, was exploited as a screening platform. The MPS-SELEX procedure enabled robust function-based screening of the hBS candidates, which was not achievable in traditional in vitro BBB models. The identified aptamer (hBS01) through five-round of MPS-SELEX exhibited high capability to transport protein cargoes across the human BBB via clathrin-mediated endocytosis and enhanced uptake efficiency in BMECs and brain cells. The enhanced targeting specificity of hBS01 was further validated both in vitro and in vivo, confirming its powerful brain accumulation efficiency. These findings demonstrate that MPS-SELEX has potential in the discovery of aptamers with high target specificity that can be widely utilized to boost the development of drug delivery strategies.


Subject(s)
Aptamers, Nucleotide , Animals , Humans , Aptamers, Nucleotide/chemistry , Endothelial Cells/metabolism , Blood-Brain Barrier/metabolism , Microphysiological Systems , SELEX Aptamer Technique/methods , Ligands
19.
Oncogene ; 42(17): 1405-1416, 2023 04.
Article in English | MEDLINE | ID: mdl-37041410

ABSTRACT

VprBP (also known as DCAF1) is a recently identified kinase that is overexpressed in cancer cells and serves as a major determinant for epigenetic gene silencing and tumorigenesis. The role of VprBP in driving target gene inactivation has been largely attributed to its ability to mediate histone H2A phosphorylation. However, whether VprBP also phosphorylates non-histone proteins and whether these phosphorylation events drive oncogenic signaling pathways have not been explored. Here we report that serine 367 phosphorylation (S367p) of p53 by VprBP is a key player in attenuating p53 transcriptional and growth suppressive activities. VprBP catalyzes p53S367p through a direct interaction with the C-terminal domain of p53. Mechanistically, VprBP-mediated S367p inhibits p53 function in the wake of promoting p53 proteasomal degradation, because blocking p53S367p increases p53 protein levels, thereby enhancing p53 transactivation. Furthermore, abrogation of VprBP-p53 interaction by p53 acetylation is critical for preventing p53S367p and potentiating p53 function in response to DNA damage. Together, our findings establish VprBP-mediated S367p as a negative regulator of p53 function and identify a previously uncharacterized mechanism by which S367p modulates p53 stability.


Subject(s)
Signal Transduction , Tumor Suppressor Protein p53 , Humans , Phosphorylation , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Phosphotransferases
20.
Nanomaterials (Basel) ; 13(5)2023 Mar 06.
Article in English | MEDLINE | ID: mdl-36903832

ABSTRACT

Controlling built-in potential can enhance the photoresponse performance of self-powered photodetectors. Among the methods for controlling the built-in potential of self-powered devices, postannealing is simpler, more efficient, and less expensive than ion doping and alternative material research. In this study, a CuO film was deposited on a ß-Ga2O3 epitaxial layer via reactive sputtering with an FTS system, and a self-powered solar-blind photodetector was fabricated through a CuO/ß-Ga2O3 heterojunction and postannealed at different temperatures. The postannealing process reduced the defects and dislocations at the interface between each layer and affected the electrical and structural properties of the CuO film. After postannealing at 300 °C, the carrier concentration of the CuO film increased from 4.24 × 1018 to 1.36 × 1020 cm-3, bringing the Fermi level toward the valence band of the CuO film and increasing the built-in potential of the CuO/ß-Ga2O3 heterojunction. Thus, the photogenerated carriers were rapidly separated, increasing the sensitivity and response speed of the photodetector. The as-fabricated photodetector with 300 °C postannealing exhibited a photo-to-dark current ratio of 1.07 × 103; responsivity and detectivity of 30.3 mA/W and 1.10 × 1012 Jones, respectively; and fast rise and decay times of 12 ms and 14 ms, respectively. After three months of storage in an open-air space, the photocurrent density of the photodetector was maintained, indicating good stability with aging. These results suggest that the photocharacteristics of CuO/ß-Ga2O3 heterojunction self-powered solar-blind photodetectors can be improved through built-in potential control using a postannealing process.

SELECTION OF CITATIONS
SEARCH DETAIL
...