Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 217
Filter
1.
Genome Res ; 34(3): 484-497, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38580401

ABSTRACT

Transcriptional regulation controls cellular functions through interactions between transcription factors (TFs) and their chromosomal targets. However, understanding the fate conversion potential of multiple TFs in an inducible manner remains limited. Here, we introduce iTF-seq as a method for identifying individual TFs that can alter cell fate toward specific lineages at a single-cell level. iTF-seq enables time course monitoring of transcriptome changes, and with biotinylated individual TFs, it provides a multi-omics approach to understanding the mechanisms behind TF-mediated cell fate changes. Our iTF-seq study in mouse embryonic stem cells identified multiple TFs that trigger rapid transcriptome changes indicative of differentiation within a day of induction. Moreover, cells expressing these potent TFs often show a slower cell cycle and increased cell death. Further analysis using bioChIP-seq revealed that GCM1 and OTX2 act as pioneer factors and activators by increasing gene accessibility and activating the expression of lineage specification genes during cell fate conversion. iTF-seq has utility in both mapping cell fate conversion and understanding cell fate conversion mechanisms.


Subject(s)
Cell Differentiation , Transcription Factors , Animals , Mice , Transcription Factors/metabolism , Transcription Factors/genetics , Cell Differentiation/genetics , Single-Cell Analysis/methods , Mouse Embryonic Stem Cells/metabolism , Mouse Embryonic Stem Cells/cytology , Cell Lineage/genetics , Transcriptome , Sequence Analysis, RNA/methods , RNA-Seq/methods , Gene Expression Profiling/methods , RNA, Small Cytoplasmic/genetics , RNA, Small Cytoplasmic/metabolism , Multiomics , Single-Cell Gene Expression Analysis
2.
Aging Cell ; : e14184, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687090

ABSTRACT

Cellular senescence contributes to inflammatory kidney disease via the secretion of inflammatory and profibrotic factors. Protease-activating receptor 2 (PAR2) is a key regulator of inflammation in kidney diseases. However, the relationship between PAR2 and cellular senescence in kidney disease has not yet been described. In this study, we found that PAR2-mediated metabolic changes in renal tubular epithelial cells induced cellular senescence and increased inflammatory responses. Using an aging and renal injury model, PAR2 expression was shown to be associated with cellular senescence. Under in vitro conditions in NRK52E cells, PAR2 activation induces tubular epithelial cell senescence and senescent cells showed defective fatty acid oxidation (FAO). Cpt1α inhibition showed similar senescent phenotype in the cells, implicating the important role of defective FAO in senescence. Finally, we subjected mice lacking PAR2 to aging and renal injury. PAR2-deficient kidneys are protected from adenine- and cisplatin-induced renal fibrosis and injury, respectively, by reducing senescence and inflammation. Moreover, kidneys lacking PAR2 exhibited reduced numbers of senescent cells and inflammation during aging. These findings offer fresh insights into the mechanisms underlying renal senescence and indicate that targeting PAR2 or FAO may be a promising therapeutic approach for managing kidney injury.

3.
PLoS One ; 19(3): e0299899, 2024.
Article in English | MEDLINE | ID: mdl-38442122

ABSTRACT

BACKGROUND: Developing contrast-associated acute kidney injury (CA-AKI) following percutaneous coronary intervention (PCI) is closely related to patient-related risk factors as well as contrast administration. The diagnostic and prognostic roles of neutrophil gelatinase-associated lipocalin (NGAL) in CA-AKI following PCI are not well established. METHODS: Consecutive patients undergoing PCI were enrolled prospectively. CA-AKI was defined as an increase in the serum creatinine level ≥0.3 mg/dL within 48 hours or ≥1.5 times the baseline within 7 days after PCI. Serum NGAL concentrations were determined immediately before and 6 hours after PCI. The participants were classified into four NGAL groups according to the pre- and post-PCI NGAL values at 75th percentile. RESULTS: CA-AKI occurred in 38 (6.4%) of 590 patients. With chronic kidney disease status (hazard ratio [HR] 1.63, 95% confidence interval [CI]: 1.06-2.52), NGAL groups defined by the combination of pre- and 6 h post-PCI values were independently associated with the occurrence of CA-AKI (HR 1.69, 95% CI: 1.16-2.45). All-cause mortality for 29-month follow-ups was different among NGAL groups (log-rank p<0.001). Pre-PCI NGAL levels significantly correlated with baseline cardiac, inflammatory, and renal markers. Although post-PCI NGAL levels increased in patients with larger contrast administration, contrast media made a relatively limited contribution to the development of CA-AKI. CONCLUSION: In patients undergoing PCI, the combination of pre- and post-PCI NGAL values may be a useful adjunct to current risk-stratification of CA-AKI and long-term mortality. CA-AKI is likely caused by systemic reserve deficiency rather than contrast administration itself.


Subject(s)
Acute Kidney Injury , Percutaneous Coronary Intervention , Renal Insufficiency, Chronic , Humans , Lipocalin-2 , Percutaneous Coronary Intervention/adverse effects , Acute Kidney Injury/chemically induced , Kidney
4.
Nat Commun ; 15(1): 1285, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38346993

ABSTRACT

During human pregnancy, extravillous trophoblasts play crucial roles in placental invasion into the maternal decidua and spiral artery remodeling. However, regulatory factors and their action mechanisms modulating human extravillous trophoblast specification have been unknown. By analyzing dynamic changes in transcriptome and enhancer profile during human trophoblast stem cell to extravillous trophoblast differentiation, we define stage-specific regulators, including an early-stage transcription factor, TFAP2C, and multiple late-stage transcription factors. Loss-of-function studies confirm the requirement of all transcription factors identified for adequate differentiation, and we reveal that the dynamic changes in the levels of TFAP2C are essential. Notably, TFAP2C pre-occupies the regulatory elements of the inactive extravillous trophoblast-active genes during the early stage of differentiation, and the late-stage transcription factors directly activate extravillous trophoblast-active genes, including themselves as differentiation further progresses, suggesting sequential actions of transcription factors assuring differentiation. Our results reveal stage-specific transcription factors and their inter-connected regulatory mechanisms modulating extravillous trophoblast differentiation, providing a framework for understanding early human placentation and placenta-related complications.


Subject(s)
Extravillous Trophoblasts , Placenta , Pregnancy , Humans , Female , Trophoblasts , Cell Differentiation/genetics , Transcription Factors/genetics , Stem Cells
7.
Eye (Lond) ; 38(2): 284-291, 2024 02.
Article in English | MEDLINE | ID: mdl-37537389

ABSTRACT

OBJECTIVE: The study attempted to identify clinical characteristics associated with structural progression in open-angle glaucoma (OAG) in the presence of MvD in different locations. METHODS: A total of 181 consecutive OAG eyes (follow-up 7.3 ± 4.0 years), which demonstrated peripapillary choroidal MvD (defined as a focal capillary loss with no visible microvascular network in choroidal layer) on optical coherence tomography (OCT) angiography (OCTA), were divided based on the location of MvD. Structural progression was determined using trend-based analysis of the Guided Progression Analysis software of Cirrus OCT. RESULTS: MvD was identified in the temporal quadrant in 110 eyes (temporal MvD; 60.5 ± 12.6 years), and in the inferior quadrant in 71 eyes (inferior MvD; 60.3 ± 11.1 years). After adjusting for age, average intraocular pressure (IOP) and baseline retinal nerve fibre layer (RNFL) thickness and visual field mean deviation, inferior MvD eyes showed faster rates of thinning in the inferior RNFL (mean (95% CI); -0.833 (-1.298 to -0.367)) compared to temporal MvD eyes (-0.144 (-0.496 to 0.207)) when long-term IOP fluctuation was larger than the median value (1.7 mmHg; P = 0.022). Long-term IOP fluctuations were independently associated with inferior RNFL thinning in eyes with inferior MvD (P = 0.002) but not in eyes with temporal MvD. CONCLUSIONS: In OAG eyes, the rates of RNFL and GCIPL thinning were comparable regardless of MvD locations. However, inferior MvD is associated with faster RNFL and GCIPL thinning in the same quadrant when long-term IOP fluctuation is present. Structural progression in the presence of temporal MvD was less associated with IOP fluctuation.


Subject(s)
Glaucoma, Open-Angle , Optic Disk , Humans , Glaucoma, Open-Angle/diagnosis , Retinal Ganglion Cells , Optic Disk/blood supply , Intraocular Pressure , Tomography, Optical Coherence/methods , Microvessels
8.
Antioxidants (Basel) ; 12(11)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-38001800

ABSTRACT

Chronic kidney disease (CKD) is a kidney structure and function abnormality. CKD development and progression are strongly influenced by oxidative stress and inflammatory responses, which can lead to tubulointerstitial fibrosis. Unfortunately, there are no effective or specific treatments for CKD. We investigated the potential of the thiobarbiturate-derived compound MHY1025 to alleviate CKD by reducing oxidative stress and inflammatory responses. In vitro experiments using NRK52E renal tubular epithelial cells revealed that MHY1025 significantly reduced LPS-induced oxidative stress and inhibited the activation of the NF-κB pathway, which is involved in inflammatory responses. Furthermore, treatment with MHY1025 significantly suppressed the expression of fibrosis-related genes and proteins induced by TGFß in NRK49F fibroblasts. Furthermore, we analyzed the MHY1025 effects in vivo. To induce kidney fibrosis, mice were administered 250 mg/kg folic acid (FA) and orally treated with MHY1025 (0.5 mg/kg/day) for one week. MHY1025 effectively decreased the FA-induced inflammatory response in the kidneys. The group treated with MHY1025 exhibited a significant reduction in cytokine and chemokine expression and decreased immune cell marker expression. Decreased inflammatory response was associated with decreased tubulointerstitial fibrosis. Overall, MHY1025 alleviated renal fibrosis by directly modulating renal epithelial inflammation and fibroblast activation, suggesting that MHY1025 has the potential to be a therapeutic agent for CKD.

9.
Cell Commun Signal ; 21(1): 215, 2023 08 18.
Article in English | MEDLINE | ID: mdl-37596656

ABSTRACT

BACKGROUND: Toll-like receptor 7 (TLR7) is an endosomal TLR activated by single-stranded RNA, including endogenous microRNAs. Although TLR7 is known to promote inflammatory responses in pathophysiological conditions, its role in renal fibrosis has not been investigated. Here, we aim to investigate the inflammatory roles of TLR7 in kidney inflammation and fibrosis. METHODS: TLR7 knockout mice (Tlr7 -/-) subjected to AD-induced kidney injury were utilized to examine the role of TLR7 in kidney fibrosis. To elucidate the role of TLR7 in renal epithelial cells, NRK52E rat renal tubule epithelial cells were employed. RESULTS: Under fibrotic conditions induced by an adenine diet (AD), TLR7 was significantly increased in damaged tubule epithelial cells, where macrophages were highly infiltrated. TLR7 deficiency protected against AD-induced tubular damage, inflammation, and renal fibrosis. Under in vitro conditions, TLR7 activation increased NF-κB activity and induced chemokine expression, whereas TLR7 inhibition effectively blocked NF-κB activation. Furthermore, among the known TLR7 endogenous ligands, miR-21 was significantly upregulated in the tubular epithelial regions. In NRK52E cells, miR-21 treatment induced pro-inflammatory responses, which could be blocked by a TLR7 inhibitor. When the TLR7 inhibitor, M5049, was administered to the AD-induced renal fibrosis model, TLR7 inhibition significantly attenuated AD-induced renal inflammation and fibrosis. CONCLUSIONS: Overall, activation of TLR7 by endogenous miR-21 in renal epithelial cells contributes to inflammatory responses in a renal fibrosis model, suggesting a possible therapeutic target for the treatment of renal fibrosis. Video Abstract.


Subject(s)
Kidney Diseases , MicroRNAs , Toll-Like Receptor 7 , Animals , Mice , Rats , Adenine , Epithelial Cells , Inflammation , MicroRNAs/genetics , NF-kappa B , Signal Transduction , Kidney Diseases/genetics , Kidney Diseases/pathology , Fibrosis
10.
J Hazard Mater ; 459: 132297, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37595467

ABSTRACT

The mesophilic PETase from Ideonella sakaiensis (IsPETase) has been shown to exhibit high PET hydrolysis activity, but its low stability limits its industrial applications. Here, we developed a variant, Z1-PETase, with enhanced soluble protein yield and durability while maintaining or improving activity at lower temperatures. The selected Z1-PETase not only exhibited a 20-fold improvement in soluble protein yield compared to the previously engineered IsPETaseS121E/D186H/S242T/N246D (4p) variant, but also demonstrated a 30% increase in low-temperature activity at 40 °C, along with an 11 °C increase in its TmD value. The PET depolymerization test across a temperature range low to high (30-70 °C) confirmed that Z1-PETase exhibits high accessibility of mesophilic PET hydrolase and rapid depolymerizing rate at higher temperature in accordance with the thermal behaviors of polymer and enzyme. Additionally, structural interpretation indicated that the stabilization of specific active site loops in Z1-PETase contributes to enhanced thermostability without adversely impacting enzymatic activity. In a pH-stat bioreactor, Z1-PETase depolymerized > 90% of both transparent and colored post-consumer PET powders within 24 and 8 h at 40 °C and 55 °C, respectively, demonstrating that the utility of this IsPETase variant in the bio-recycling of PET.


Subject(s)
Bioreactors , Hydrolases , Hydrolysis , Polymers , Powders
11.
Cell Death Dis ; 14(7): 422, 2023 07 13.
Article in English | MEDLINE | ID: mdl-37443143

ABSTRACT

ß-arrestin 2 (ARRB2) is functionally implicated in cancer progression via various signaling pathways. However, its role in lung cancer remains unclear. To obtain clinical insight on its function in lung cancer, microarray data from lung tumor tissues (LTTs) and matched lung normal tissues (mLNTs) of primary non-small cell lung cancer (NSCLC) patients (n = 37) were utilized. ARRB2 expression levels were markedly decreased in all 37 LTTs compared to those in matched LNTs of NSCLC patients. They were significantly co-related to enrichment gene sets associated with oncogenic and cancer genes. Importantly, Gene Set Enrichment Analysis (GSEA) between three LTTs with highly down-regulated ARRB2 and three LTTs with lowly down-regulated ARRB2 revealed significant enrichments related to toll-like receptor (TLR) signaling and autophagy genes in three LTTs with highly down-regulated ARRB2, suggesting that ARRB2 was negatively involved in TLR-mediated signals for autophagy induction in lung cancer. Biochemical studies for elucidating the molecular mechanism revealed that ARRB2 interacted with TNF receptor-associated factor 6 (TRAF6) and Beclin 1 (BECN1), thereby inhibiting the ubiquitination of TRAF6-TAB2 to activate NF-κB and TRAF6-BECN1 for autophagy stimulated by TLR3 and TLR4, suggesting that ARRB2 could inhibit the TRAF6-TAB2 signaling axis for NF-κB activation and TRAF6-BECN1 signaling axis for autophagy in response to TLR3 and TLR4. Notably, ARRB2-knockout (ARRB2KO) lung cancer cells exhibited marked enhancements of cancer migration, invasion, colony formation, and proliferation in response to TLR3 and TLR4 stimulation. Altogether, our current data suggest that ARRB2 can negatively regulate lung cancer progression by inhibiting TLR3- and TLR4-induced autophagy.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , NF-kappa B/metabolism , TNF Receptor-Associated Factor 6/genetics , TNF Receptor-Associated Factor 6/metabolism , Lung Neoplasms/pathology , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 3/metabolism , beta-Arrestin 2/genetics , beta-Arrestin 2/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Toll-Like Receptors/metabolism , Lung/metabolism , Autophagy/genetics , Adaptor Proteins, Signal Transducing/metabolism
12.
Cell Biosci ; 13(1): 102, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37287005

ABSTRACT

BACKGROUND: Free fatty acid receptors (FFARs) and toll-like receptors (TLRs) recognize microbial metabolites and conserved microbial products, respectively, and are functionally implicated in inflammation and cancer. However, whether the crosstalk between FFARs and TLRs affects lung cancer progression has never been addressed. METHODS: We analyzed the association between FFARs and TLRs using The Cancer Genome Atlas (TCGA) lung cancer data and our cohort of non-small cell lung cancer (NSCLC) patient data (n = 42), and gene set enrichment analysis (GSEA) was performed. For the functional analysis, we generated FFAR2-knockout (FFAR2KO) A549 and FFAR2KO H1299 human lung cancer cells and performed biochemical mechanistic studies and cancer progression assays, including migration, invasion, and colony-formation assays, in response to TLR stimulation. RESULTS: The clinical TCGA data showed a significant down-regulation of FFAR2, but not FFAR1, FFAR3, and FFAR4, in lung cancer, and a negative correlation with TLR2 and TLR3. Notably, GSEA showed significant enrichment in gene sets related to the cancer module, the innate signaling pathway, and the cytokine-chemokine signaling pathway in FFAR2DownTLR2UpTLR3Up lung tumor tissues (LTTs) vs. FFAR2upTLR2DownTLR3Down LTTs. Functionally, treatment with propionate (an agonist of FFAR2) significantly inhibited human A549 or H1299 lung cancer migration, invasion, and colony formation induced by TLR2 or TLR3 through the attenuation of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB. Moreover, FFAR2KO A549 and FFAR2KO H1299 human lung cancer cells showed marked increases in cell migration, invasion, and colony formation in response to TLR2 or TLR3 stimulation, accompanied by elevations in NF-κB activation, cAMP levels, and the production of C-C motif chemokine ligand (CCL)2, interleukin (IL)-6, and matrix metalloproteinase (MMP) 2 cytokines. CONCLUSION: Our results suggest that FFAR2 signaling antagonized TLR2- and TLR3-induced lung cancer progression via the suppression of the cAMP-AMPK-TAK1 signaling axis for the activation of NF-κB, and its agonist might be a potential therapeutic agent for the treatment of lung cancer.

13.
Int J Biol Macromol ; 243: 125252, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37295700

ABSTRACT

Ideonella sakaiensis is the bacterium that can survive by degrading polyethylene terephthalate (PET) plastic, and terephthalic acid (TPA) binding protein (IsTBP) is an essential periplasmic protein for uptake of TPA into the cytosol for complete degradation of PET. Here, we demonstrated that IsTBP has remarkably high specificity for TPA among 33 monophenolic compounds and two 1,6-dicarboxylic acids tested. Structural comparisons with 6-carboxylic acid binding protein (RpAdpC) and TBP from Comamonas sp. E6 (CsTphC) revealed the key structural features that contribute to high TPA specificity and affinity of IsTBP. We also elucidated the molecular mechanism underlying the conformational change upon TPA binding. In addition, we developed the IsTBP variant with enhanced TPA sensitivity, which can be expanded for the use of TBP as a biosensor for PET degradation.


Subject(s)
Burkholderiales , Comamonas , Phthalic Acids , Phthalic Acids/chemistry , Hydrolases/chemistry
14.
ESC Heart Fail ; 10(4): 2567-2576, 2023 08.
Article in English | MEDLINE | ID: mdl-37312276

ABSTRACT

AIMS: Although various non-invasive cardiac examinations are known to be predictive of long-term outcomes in patients with heart failure (HF), combining them properly would provide synergism. We aimed to show that non-invasive cardiac assessments targeting left ventricular filling pressure (LVFP), left atrial remodelling, and exercise capacity would provide better prognostication in combination. METHODS AND RESULTS: This prospective observational study included consecutive hospitalized stage A-C HF patients evaluated with N-terminal pro-B-type natriuretic peptide (NT-proBNP), echocardiography including two-dimensional speckle tracking, and cardiopulmonary exercise testing. According to NT-proBNP and echocardiographic semi-quantitative LVFP grading (Echo-LVFP), patients were classified into three LVFP groups: normal range of both Echo-LVFP and NT-proBNP (Group 1), normal range of Echo-LVFP but elevated NT-proBNP (Group 2), and elevated Echo-LVFP and NT-proBNP (Group 3). The adverse outcome was defined as a composite of cardiovascular death, non-fatal acute coronary syndrome, acute stroke, or HF-related hospitalization. Among 224 HF patients (mean age of 63.8 ± 11.6 years, 158 men) analysed, 160 (71.4%) had ischaemic aetiology. During the follow-up of 18.6 ± 9.8 months, event-free survival in Group 2 (n = 56, age of 65.4 ± 12.4) was better than that in Group 3 (n = 45, age of 68.5 ± 11.5) but worse than that in Group 1 (n = 123, mean age of 61.4 ± 10.5) (log-rank P < 0.001). Mechanical left atrial dysfunction (peak longitudinal strain <28%) (adjusted hazard ratio 5.69, 95% confidence interval 1.06-4.48) and limited exercise capacity (peak VO2 per +5 mL/kg/min) (adjusted hazard ratio 0.63, 95% confidence interval 0.46-0.87) were also predictable adverse outcomes. Serial addition of peak VO2 and left atrial strain to the model incrementally enhanced the predictive power of LVFP-based risk stratification for adverse outcomes. CONCLUSIONS: The combination of NT-proBNP and Echo-LVFP could be used to predict adverse outcomes in patients with HF of various stages. Left atrial mechanics and exercise capacity are incremental to prognostication. Non-invasive test findings could be strategically combined to provide an integrative profile of cardiac performance.


Subject(s)
Atrial Fibrillation , Heart Failure , Male , Humans , Middle Aged , Aged , Stroke Volume , Heart Failure/diagnosis , Echocardiography , Prospective Studies
15.
BMC Complement Med Ther ; 23(1): 141, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37138269

ABSTRACT

BACKGROUND: The endoplasmic reticulum (ER) plays a pivotal role in maintaining cellular metabolic homeostasis. ER stress refers to the accumulation of misfolded proteins, which can trigger an unfolded protein response for survival or death in the cells. Diallyl disulfide (DADS), a major active compound in garlic, has many health benefits for patients with metabolic diseases, especially cardiovascular or fatty liver diseases. However, its role in attenuating hypercholesterolemia by suppressing ER stress remains unknown. Therefore, in this study, we determined whether DADS supplementation could reduce ER stress in apolipoprotein E-deficient (ApoE-/-) mice fed a Western-type diet (WD). METHODS: ApoE-/- mice were fed either a WD alone or a WD supplemented with 0.1% DADS for 12 weeks (n = 10). Levels of plasma total cholesterol, triglyceride, leptin, and insulin were determined. Western blotting was performed to measure protein levels involved in ER stress markers. Histology and Immunostaining were performed on aortic root sections to confirm the effect of DADS on histology and expression of ER chaperone protein GRP78. RESULTS: The metabolic parameters showed that increases in fat weight, leptin resistance, and hypercholesterolemia were reversed in DADS-supplemented mice (p < 0.05). In addition, DADS ameliorated not only the protein of ER stress markers, phospho-eukaryotic initiation factor 2 subunit alpha and C/EBP homologous protein in the liver (p < 0.05) but also glucose-related protein 78 localization in the aorta. CONCLUSIONS: This indicates that DADS inhibits diet-induced hypercholesterolemia, at least in parts by regulating ER stress markers. DADS may be a good candidate for treating individuals with diet-induced hypercholesterolemia.


Subject(s)
Hypercholesterolemia , Animals , Mice , Apolipoproteins , Apolipoproteins E , Diet, Western , Endoplasmic Reticulum Stress , Hypercholesterolemia/drug therapy , Leptin
16.
Nucleic Acids Res ; 51(8): 3806-3819, 2023 05 08.
Article in English | MEDLINE | ID: mdl-36951126

ABSTRACT

The placenta is an essential organ that supports the growth and development of the fetus during pregnancy. However, cell type-specific enhancers and transcription factors (TFs), and the mechanisms underlying the maintenance and differentiation of trophoblast stem cell (TSC) populations in the human placenta remain elusive. Here, using human TSCs as a model system, we identify 31,362 enhancers that are enriched with the motifs of previously reported TSC-pivotal TFs, including TEAD4, GATA2/3 and TFAP2C. Subsequently, we identify 580 super-enhancers (SEs) and 549 SE-associated genes. These genes are robustly expressed in the human placenta and include numerous TFs, implying that SE-associated TFs (SE-TFs) may play crucial roles in placental development. Additionally, we identify the global binding sites of five TSC-pivotal SE-TFs (FOS, GATA2, MAFK, TEAD4 and TFAP2C), revealing that they preferentially co-occupy enhancers, regulate each other and form a trophoblast-active gene regulatory network. Loss-of-function studies unveil that the five TFs promote self-renewal of TSCs by activating proliferation-associated genes while repressing developmental genes. We further reveal that the five TFs exert conserved and unique functions on placental development between humans and mice. Our study provides important insights into the roles of human TSC-pivotal TFs in regulating placenta-specific gene expression programs.


Subject(s)
Transcription Factors , Trophoblasts , Humans , Female , Pregnancy , Mice , Animals , Transcription Factors/genetics , Transcription Factors/metabolism , Placenta/metabolism , Stem Cells/metabolism , Cell Differentiation/genetics , Gene Expression , TEA Domain Transcription Factors
17.
PLoS One ; 18(1): e0281296, 2023.
Article in English | MEDLINE | ID: mdl-36719902

ABSTRACT

BACKGROUND: Clinical courses of acute myocarditis are heterogeneous in populations and geographic regions. There is a dearth of long-term outcomes data for acute myocarditis prior to the coronavirus disease pandemic, particularly in the older and female population. This study aimed to provide the nationwide epidemiologic approximates of clinically suspected acute myocarditis across adults of all ages over the long term. METHODS: From the nationwide governmental health insurance database, a retrospective cohort comprised all patients aged 20-79 who were hospitalized for clinically suspected acute myocarditis without underlying cardiac diseases from 2006 to 2018. The complicated phenotype was defined as requiring hemodynamic or major organ support. Over 10 years, all-cause mortality and index event-driven excess mortality were evaluated according to young-adult (20-39 years), mid-life (40-59 years), and older-adult (60-79 years) age groups. RESULTS: Among 2,988 patients (51.0±16.9 years, 46.2% women), 362 (12.1%) were of complicated phenotype. Of these, 163 (45.0%) had died within 1 month. All-cause death at 30 days occurred in 40 (4.7%), 52 (4.8%), and 105 (10.0%) patients in the young-adult, mid-life, and older-adult groups, respectively. For 10 years of follow-up, all-cause death occurred in 762 (25.5%). Even in young adult patients with non-complicated phenotypes, excess mortality remained higher compared to the general population. CONCLUSION: In hospitalized patients with clinically suspected acute myocarditis, short-term mortality is high both in young and older adults, particularly those with comorbidities and severe clinical presentation. Furthermore, excess mortality remains high for at least 10 years after index hospitalization in young adults.


Subject(s)
COVID-19 , Myocarditis , Humans , Female , Male , COVID-19/complications , Myocarditis/complications , Retrospective Studies , Hospitalization
18.
Autophagy ; 19(7): 2111-2142, 2023 07.
Article in English | MEDLINE | ID: mdl-36719671

ABSTRACT

There are diverse links between macroautophagy/autophagy pathways and unfolded protein response (UPR) pathways under endoplasmic reticulum (ER) stress conditions to restore ER homeostasis. Phosphorylation of EIF2S1/eIF2α is an important mechanism that can regulate all three UPR pathways through transcriptional and translational reprogramming to maintain cellular homeostasis and overcome cellular stresses. In this study, to investigate the roles of EIF2S1 phosphorylation in regulation of autophagy during ER stress, we used EIF2S1 phosphorylation-deficient (A/A) cells in which residue 51 was mutated from serine to alanine. A/A cells exhibited defects in several steps of autophagic processes (such as autophagosome and autolysosome formation) that are regulated by the transcriptional activities of the autophagy master transcription factors TFEB and TFE3 under ER stress conditions. EIF2S1 phosphorylation was required for nuclear translocation of TFEB and TFE3 during ER stress. In addition, EIF2AK3/PERK, PPP3/calcineurin-mediated dephosphorylation of TFEB and TFE3, and YWHA/14-3-3 dissociation were required for their nuclear translocation, but were insufficient to induce their nuclear retention during ER stress. Overexpression of the activated ATF6/ATF6α form, XBP1s, and ATF4 differentially rescued defects of TFEB and TFE3 nuclear translocation in A/A cells during ER stress. Consequently, overexpression of the activated ATF6 or TFEB form more efficiently rescued autophagic defects, although XBP1s and ATF4 also displayed an ability to restore autophagy in A/A cells during ER stress. Our results suggest that EIF2S1 phosphorylation is important for autophagy and UPR pathways, to restore ER homeostasis and reveal how EIF2S1 phosphorylation connects UPR pathways to autophagy.Abbreviations: A/A: EIF2S1 phosphorylation-deficient; ACTB: actin beta; Ad-: adenovirus-; ATF6: activating transcription factor 6; ATZ: SERPINA1/α1-antitrypsin with an E342K (Z) mutation; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CDK4: cyclin dependent kinase 4; CDK6: cyclin dependent kinase 6; CHX: cycloheximide; CLEAR: coordinated lysosomal expression and regulation; Co-IP: coimmunoprecipitation; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; DAPI: 4',6-diamidino-2-phenylindole dihydrochloride; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethyl sulfoxide; DTT: dithiothreitol; EBSS: Earle's Balanced Salt Solution; EGFP: enhanced green fluorescent protein; EIF2S1/eIF2α: eukaryotic translation initiation factor 2 subunit alpha; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERAD: endoplasmic reticulum-associated degradation; ERN1/IRE1α: endoplasmic reticulum to nucleus signaling 1; FBS: fetal bovine serum; gRNA: guide RNA; GSK3B/GSK3ß: glycogen synthase kinase 3 beta; HA: hemagglutinin; Hep: immortalized hepatocyte; IF: immunofluorescence; IRES: internal ribosome entry site; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LMB: leptomycin B; LPS: lipopolysaccharide; MAP1LC3A/B/LC3A/B: microtubule associated protein 1 light chain 3 alpha/beta; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MEFs: mouse embryonic fibroblasts; MFI: mean fluorescence intensity; MTORC1: mechanistic target of rapamycin kinase complex 1; NES: nuclear export signal; NFE2L2/NRF2: NFE2 like bZIP transcription factor 2; OE: overexpression; PBS: phosphate-buffered saline; PLA: proximity ligation assay; PPP3/calcineurin: protein phosphatase 3; PTM: post-translational modification; SDS: sodium dodecyl sulfate; SDS-PAGE: sodium dodecyl sulfate-polyacrylamide gel electrophoresis; SEM: standard error of the mean; TEM: transmission electron microscopy; TFE3: transcription factor E3; TFEB: transcription factor EB; TFs: transcription factors; Tg: thapsigargin; Tm: tunicamycin; UPR: unfolded protein response; WB: western blot; WT: wild-type; Xbp1s: spliced Xbp1; XPO1/CRM1: exportin 1.


Subject(s)
Endoribonucleases , Protein Serine-Threonine Kinases , Animals , Mice , Protein Serine-Threonine Kinases/metabolism , Phosphorylation , Endoribonucleases/metabolism , Prokaryotic Initiation Factor-2/metabolism , Autophagy/genetics , Calcineurin/metabolism , Endoplasmic Reticulum-Associated Degradation , Sodium Dodecyl Sulfate/metabolism , Fibroblasts/metabolism , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Microtubule-Associated Proteins/metabolism , Lysosomes/metabolism
19.
J Gerontol A Biol Sci Med Sci ; 78(1): 60-68, 2023 01 26.
Article in English | MEDLINE | ID: mdl-35867996

ABSTRACT

The age-associated functional decline of the kidney is accompanied by structural changes including glomerular sclerosis and interstitial fibrosis. Aging kidneys also exhibit increased vulnerability in stressful environmental conditions. In this study, we assessed the differences in responses between young and aged animals to folic acid (FA)-induced renal fibrosis. To monitor the effects of aging on FA-induced kidney fibrosis, we administered FA (250 mg/kg) to young (6-month old) and aged (20-month old) rats. The development of severe fibrosis was only detected in aged rat kidneys, which was accompanied by increased kidney injury and inflammation. Furthermore, we found that FA-treated aged rats had significantly lower farnesoid X receptor (FXR) expression in the tubular epithelial cells than the rats not treated with FA. Interestingly, the extent of inflammation was severe in the kidneys of aged rat, where the FXR expression was low. To explore the role of FXR in kidney inflammation, in vitro studies were performed using NRK52E kidney tubule epithelial cells. NF-κB activation by lipopolysaccharide treatment induces chemokine production in NRK52E cells. The activation of FXR by obeticholic acid significantly reduced the transcriptional activity of NF-κB and chemokine production. In contrast, FXR knockdown increased LPS-induced chemokine production in NRK52E cells. Finally, FXR-knockout mice that were administered FA showed increased inflammation and severe fibrosis. In summary, we demonstrated that diminished FXR expression in the epithelial cells of the renal tubules exacerbated the fibrotic response in aged rat kidneys by upregulating pro-inflammatory NF-κB activation.


Subject(s)
Kidney Diseases , NF-kappa B , Mice , Rats , Animals , NF-kappa B/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Receptors, Cytoplasmic and Nuclear/pharmacology , Kidney/pathology , Fibrosis , Inflammation/metabolism , Kidney Diseases/pathology , Chemokines/metabolism
20.
Opt Express ; 30(25): 44533-44544, 2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36522876

ABSTRACT

Two NIR band-pass filters for CMOS image sensors are developed by incorporating NIR absorption dye and silver nanodisks simultaneously in a transparent polymer, one of which blocks the NIR near the wavelength of 750 nm and the other near 950 nm. They offer low NIR transmittance while maintaining high visible light transparency even at a thin film thickness of 500 nm. By superimposing the proposed NIR band-pass filters, an NIR cutoff filter with a thickness of 1 µm is formed that shields the NIR at wavelengths longer than 680 nm while remaining transparent in the visible range.

SELECTION OF CITATIONS
SEARCH DETAIL
...