Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep Methods ; 3(10): 100617, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37852254

ABSTRACT

Co-occurrence of multiple myeloma and acute myelogenous leukemia is rare, with both malignancies often tracing back to multipotent hematopoietic stem cells. Cytogenetic techniques are the established baseline for diagnosis and characterization of complex hematological malignancies. In this study, we develop a workflow called Hema-seq to delineate clonal changes across various hematopoietic lineages through the integration of whole-genome sequencing, copy-number variations, cell morphology, and cytogenetic aberrations. In Hema-seq, cells are selected from Wright-stained slides and fluorescent probe-stained slides for sequencing. This technique therefore enables direct linking of whole-genome sequences to cytogenetic profiles. Through this method, we mapped sequential clonal alterations within the hematopoietic lineage, identifying critical shifts leading to myeloma and acute myeloid leukemia (AML) cell formations. By synthesizing data from each cell lineage, we provided insights into the hematopoietic tree's clonal evolution. Overall, this study highlights Hema-seq's capability in deciphering genomic heterogeneity in complex hematological malignancies, which can enable better diagnosis and treatment strategies.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Multiple Myeloma , Humans , Hematologic Neoplasms/diagnosis , Chromosome Aberrations , Leukemia, Myeloid, Acute/diagnosis , Cytogenetic Analysis , Multiple Myeloma/diagnosis , Genomics
2.
Nat Commun ; 14(1): 5261, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644058

ABSTRACT

Determining mutational landscapes in a spatial context is essential for understanding genetically heterogeneous cell microniches. Current approaches, such as Multiple Displacement Amplification (MDA), offer high genome coverage but limited multiplexing, which hinders large-scale spatial genomic studies. Here, we introduce barcoded MDA (bMDA), a technique that achieves high-coverage genomic analysis of low-input DNA while enhancing the multiplexing capabilities. By incorporating cell barcodes during MDA, bMDA streamlines library preparation in one pot, thereby overcoming a key bottleneck in spatial genomics. We apply bMDA to the integrative spatial analysis of triple-negative breast cancer tissues by examining copy number alterations, single nucleotide variations, structural variations, and kataegis signatures for each spatial microniche. This enables the assessment of subclonal evolutionary relationships within a spatial context. Therefore, bMDA has emerged as a scalable technology with the potential to advance the field of spatial genomics significantly.


Subject(s)
Amines , Genomics , Biological Evolution , Gene Library
3.
Nat Commun ; 13(1): 2540, 2022 05 09.
Article in English | MEDLINE | ID: mdl-35534484

ABSTRACT

Epitranscriptomic features, such as single-base RNA editing, are sources of transcript diversity in cancer, but little is understood in terms of their spatial context in the tumour microenvironment. Here, we introduce spatial-histopathological examination-linked epitranscriptomics converged to transcriptomics with sequencing (Select-seq), which isolates regions of interest from immunofluorescence-stained tissue and obtains transcriptomic and epitranscriptomic data. With Select-seq, we analyse the cancer stem cell-like microniches in relation to the tumour microenvironment of triple-negative breast cancer patients. We identify alternative splice variants, perform complementarity-determining region analysis of infiltrating T cells and B cells, and assess adenosine-to-inosine base editing in tumour tissue sections. Especially, in triple-negative breast cancer microniches, adenosine-to-inosine editome specific to different microniche groups is identified.


Subject(s)
Adenosine Deaminase , Triple Negative Breast Neoplasms , Adenosine/genetics , Adenosine Deaminase/genetics , Humans , Inosine/genetics , Neoplastic Stem Cells , Tumor Microenvironment/genetics
4.
Lab Chip ; 20(5): 912-922, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32057051

ABSTRACT

Liquid biopsy holds promise towards practical implementation of personalized theranostics of cancer. In particular, circulating tumour cells (CTCs) can provide clinically actionable information that can be directly linked to prognosis or therapy decisions. In this study, gene expression patterns and genetic mutations in single CTCs are simultaneously analysed by strategically combining microfluidic technology and in situ molecular profiling technique. Towards this, the development and demonstration of the OPENchip (On-chip Post-processing ENabling chip) platform for single CTC analysis by epithelial CTC enrichment and subsequent in situ molecular profiling is reported. For in situ molecular profiling, padlock probes that identify specific desired targets to examine biomarkers of clinical relevance in cancer diagnostics were designed and used to create libraries of rolling circle amplification products. We characterize the OPENchip in terms of its capture efficiency and capture purity, and validate the probe design using different cell lines. By integrating the obtained results, molecular analyses of CTCs from metastatic breast cancer (HER2 (ERBB2) gene expression and PIK3CA mutations) and metastatic pancreatic cancer (KRAS gene mutations) patients were demonstrated without any off-chip processes. The results substantiate the potential implementation of early molecular detection of cancer through sequencing-free liquid biopsy.


Subject(s)
Breast Neoplasms , Neoplastic Cells, Circulating , Breast Neoplasms/genetics , Female , Gene Expression , Humans , Liquid Biopsy , Mutation , Oligonucleotide Array Sequence Analysis
5.
Small ; 15(37): e1902607, 2019 09.
Article in English | MEDLINE | ID: mdl-31240868

ABSTRACT

Single cell analysis of heterogeneous circulating tumor cells (CTCs), by which the genomic profiles of rare single CTCs are connected to the clinical status of cancer patients, is crucial for understanding cancer metastasis and the clinical impact on patients. However, the heterogeneity in genotypes and phenotypes and rarity of CTCs have limited extensive single CTC genome research, further hindering clinical investigation. Despite recent efforts to build platforms that separate CTCs, the investigation on CTCs is difficult due to the lack of a retrieval process at the single cell level. In this study, laser-induced isolation of microstructures on an optomechanically-transferrable-chip and sequencing (LIMO-seq) is applied for whole genome sequencing of single CTCs. Also, the whole genome sequences and the molecular profiles of the isolated single cells from the whole blood of a breast cancer patient are analyzed.


Subject(s)
Neoplastic Cells, Circulating/metabolism , Whole Genome Sequencing/methods , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Female , High-Throughput Nucleotide Sequencing , Humans , Oligonucleotide Array Sequence Analysis
6.
MAbs ; 11(3): 532-545, 2019 04.
Article in English | MEDLINE | ID: mdl-30735467

ABSTRACT

In antibody discovery, in-depth analysis of an antibody library and high-throughput retrieval of clones in the library are crucial to identifying and exploiting rare clones with different properties. However, existing methods have technical limitations, such as low process throughput from the laborious cloning process and waste of the phenotypic screening capacity from unnecessary repetitive tests on the dominant clones. To overcome the limitations, we developed a new high-throughput platform for the identification and retrieval of clones in the library, TrueRepertoire™. This new platform provides highly accurate sequences of the clones with linkage information between heavy and light chains of the antibody fragment. Additionally, the physical DNA of clones can be retrieved in high throughput based on the sequence information. We validated the high accuracy of the sequences and demonstrated that there is no platform-specific bias. Moreover, the applicability of TrueRepertoire™ was demonstrated by a phage-displayed single-chain variable fragment library targeting human hepatocyte growth factor protein.


Subject(s)
Avian Proteins , Cell Surface Display Techniques/methods , Single-Chain Antibodies , Animals , Avian Proteins/biosynthesis , Avian Proteins/chemistry , Avian Proteins/genetics , Bacteriophages/genetics , Chickens , Single-Chain Antibodies/biosynthesis , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...