Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-28416541

ABSTRACT

New and improved treatments for tuberculosis (TB) are urgently needed. Recently, it has been demonstrated that verapamil, an efflux inhibitor, can reduce bacterial drug tolerance caused by efflux pump activity when administered in combination with available antituberculosis agents. The aim of this study was to evaluate the effectiveness of verapamil in combination with the antituberculosis drug candidate Q203, which has recently been developed and is currently under clinical trials as a potential antituberculosis agent. We evaluated changes in Q203 activity in the presence and absence of verapamil in vitro using the resazurin microplate assay and ex vivo using a microscopy-based phenotypic assay for the quantification of intracellular replicating mycobacteria. Verapamil increased the potency of Q203 against Mycobacterium tuberculosis both in vitro and ex vivo, indicating that efflux pumps are associated with the activity of Q203. Other efflux pump inhibitors also displayed an increase in Q203 potency, strengthening this hypothesis. Therefore, the combination of verapamil and Q203 may be a promising combinatorial strategy for anti-TB treatment to accelerate the elimination of M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis/pathogenicity , Tuberculosis/metabolism , Antitubercular Agents/pharmacology , Bacterial Proteins/metabolism , Drug Resistance, Multiple, Bacterial/genetics , Imidazoles/pharmacology , Microbial Sensitivity Tests , Mycobacterium tuberculosis/drug effects , Oxazines/pharmacology , Piperidines/pharmacology , Pyridines/pharmacology , Verapamil/pharmacology , Xanthenes/pharmacology
2.
Nanomaterials (Basel) ; 4(3): 813-826, 2014 Sep 11.
Article in English | MEDLINE | ID: mdl-28344250

ABSTRACT

Tuberculosis is a major problem in public health. While new effective treatments to combat the disease are currently under development, they tend suffer from poor solubility often resulting in low and/or inconsistent oral bioavailability. Mesoporous materials are here investigated in an in vitro intracellular assay, for the effective delivery of compound PA-824; a poorly soluble bactericidal agent being developed against Tuberculosis (TB). Mesoporous materials enhance the solubility of PA-824; however, this is not translated into a higher antibacterial activity in TB-infected macrophages after 5 days of incubation, where similar values are obtained. The lack of improved activity may be due to insufficient release of the drug from the mesopores in the context of the cellular environment. However, these results show promising data for the use of mesoporous particles in the context of oral delivery with expected improvements in bioavailability.

3.
Nat Med ; 19(9): 1157-60, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23913123

ABSTRACT

New therapeutic strategies are needed to combat the tuberculosis pandemic and the spread of multidrug-resistant (MDR) and extensively drug-resistant (XDR) forms of the disease, which remain a serious public health challenge worldwide. The most urgent clinical need is to discover potent agents capable of reducing the duration of MDR and XDR tuberculosis therapy with a success rate comparable to that of current therapies for drug-susceptible tuberculosis. The last decade has seen the discovery of new agent classes for the management of tuberculosis, several of which are currently in clinical trials. However, given the high attrition rate of drug candidates during clinical development and the emergence of drug resistance, the discovery of additional clinical candidates is clearly needed. Here, we report on a promising class of imidazopyridine amide (IPA) compounds that block Mycobacterium tuberculosis growth by targeting the respiratory cytochrome bc1 complex. The optimized IPA compound Q203 inhibited the growth of MDR and XDR M. tuberculosis clinical isolates in culture broth medium in the low nanomolar range and was efficacious in a mouse model of tuberculosis at a dose less than 1 mg per kg body weight, which highlights the potency of this compound. In addition, Q203 displays pharmacokinetic and safety profiles compatible with once-daily dosing. Together, our data indicate that Q203 is a promising new clinical candidate for the treatment of tuberculosis.


Subject(s)
Adenosine Triphosphate/biosynthesis , Electron Transport Complex III/antagonists & inhibitors , Extensively Drug-Resistant Tuberculosis/drug therapy , Imidazoles/pharmacology , Mycobacterium tuberculosis/drug effects , Piperidines/pharmacology , Pyridines/pharmacology , Animals , Cell Proliferation/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , Electron Transport Complex III/genetics , Imidazoles/pharmacokinetics , Mice , Mice, Inbred BALB C , Piperidines/pharmacokinetics , Pyridines/pharmacokinetics , Rats , Rats, Sprague-Dawley
4.
Nat Cell Biol ; 8(5): 516-23, 2006 May.
Article in English | MEDLINE | ID: mdl-16622416

ABSTRACT

Adiponectin, also known as Acrp30, is an adipose tissue-derived hormone with anti-atherogenic, anti-diabetic and insulin sensitizing properties. Two seven-transmembrane domain-containing proteins, AdipoR1 and AdipoR2, have recently been identified as adiponectin receptors, yet signalling events downstream of these receptors remain poorly defined. By using the cytoplasmic domain of AdipoR1 as bait, we screened a yeast two-hybrid cDNA library derived from human fetal brain. This screening led to the identification of a phosphotyrosine binding domain and a pleckstrin homology domain-containing adaptor protein, APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine binding (PTB) domain and leucine zipper motif). APPL1 interacts with adiponectin receptors in mammalian cells and the interaction is stimulated by adiponectin. Overexpression of APPL1 increases, and suppression of APPL1 level reduces, adiponectin signalling and adiponectin-mediated downstream events (such as lipid oxidation, glucose uptake and the membrane translocation of glucose transport 4 (GLUT4)). Adiponectin stimulates the interaction between APPL1 and Rab5 (a small GTPase) interaction, leading to increased GLUT4 membrane translocation. APPL1 also acts as a critical regulator of the crosstalk between adiponectin signalling and insulin signalling pathways. These results demonstrate a key function for APPL1 in adiponectin signalling and provide a molecular mechanism for the insulin sensitizing function of adiponectin.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Adiponectin/metabolism , Carrier Proteins/metabolism , Receptors, Cell Surface/metabolism , Signal Transduction , Adiponectin/pharmacology , Animals , CHO Cells , Carrier Proteins/chemistry , Cells, Cultured , Cricetinae , Cricetulus , Gene Expression Profiling , Glucose/metabolism , Humans , Insulin/pharmacology , Mice , Molecular Sequence Data , Myoblasts/cytology , Myoblasts/drug effects , Protein Binding , Receptors, Adiponectin , rab5 GTP-Binding Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL