Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-39131310

ABSTRACT

Inositol phosphates are critical signaling messengers involved in a wide range of biological pathways in which inositol polyphosphate multikinase (IPMK) functions as a rate-limiting enzyme for inositol polyphosphate metabolism. IPMK has been implicated in cellular metabolism, but its function at the systemic level is still poorly understood. Since skeletal muscle is a major contributor to energy homeostasis, we have developed a mouse model in which skeletal muscle IPMK is specifically deleted and examined how a loss of IPMK affects whole-body metabolism. Here, we report that mice in which IPMK knockout is deleted, specifically in the skeletal muscle, displayed an increased body weight, disrupted glucose tolerance, and reduced exercise tolerance under the normal diet. Moreover, these changes were associated with an increased accumulation of triglyceride in skeletal muscle. Furthermore, we have confirmed that a loss of IPMK led to reduced beta-oxidation, increased triglyceride accumulation, and impaired insulin response in IPMK-deficient muscle cells. Thus, our results suggest that IPMK mediates the whole-body metabolism via regulating muscle metabolism and may be potentially targeted for the treatment of metabolic syndromes.

2.
Can Vet J ; 65(6): 553-558, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38827592

ABSTRACT

Gastrointestinal stromal tumors arising from gastric cardia are uncommon in dogs. A few studies have shown the effectiveness of tyrosine kinase inhibitors in the treatment of canine gastrointestinal stromal tumors, but no standardized protocols are currently available. An 11-year-old spayed female Maltese dog was diagnosed with a gastrointestinal stromal tumor using histopathological and immunohistochemical analyses. An adenosine triphosphate-based tumor chemosensitivity assay revealed that imatinib at lower concentrations had a stronger inhibitory effect than toceranib. Based on the results of the assay, the dog was treated with imatinib after surgery. After 28 mo of therapy, there was no recurrence of the tumor. Key clinical message: Adenosine triphosphate-based tumor chemosensitivity assays may help clinicians to select appropriate postoperative chemotherapeutic drugs for incompletely resected gastrointestinal stromal tumors in dogs.


Gestion réussie à la suite d'une résection incomplète d'une tumeur stromale gastro-intestinale à l'aide de l'imatinib basée sur un test de sensibilité tumorale à base d'adénosine triphosphate chez un chien. Les tumeurs stromales gastro-intestinales résultant du cardia gastrique sont rares chez le chien. Quelques études ont montré l'efficacité des inhibiteurs de la tyrosine kinase dans le traitement des tumeurs stromales gastrointestinales canines, mais aucun protocole standardisé n'est actuellement disponible. Une chienne maltaise stérilisée de 11 ans a reçu un diagnostic de tumeur stromale gastro-intestinale à l'aide d'analyses histopathologiques et immunohistochimiques. Un test de chimiosensibilité tumorale à base d'adénosine triphosphate a révélé que l'imatinib à des concentrations plus faibles avait un effet inhibiteur plus fort que le tocéranib. Sur la base des résultats du test, le chien a été traité avec de l'imatinib après l'opération. Après 28 mois de traitement, il n'y a eu aucune récidive de la tumeur.Message clinique clé :Les tests de chimiosensibilité tumorale à base d'adénosine triphosphate peuvent aider les cliniciens à sélectionner les médicaments chimiothérapeutiques postopératoires appropriés pour les tumeurs stromales gastro-intestinales incomplètement réséquées chez le chien.(Traduit par Dr Serge Messier).


Subject(s)
Antineoplastic Agents , Dog Diseases , Gastrointestinal Stromal Tumors , Imatinib Mesylate , Animals , Gastrointestinal Stromal Tumors/veterinary , Gastrointestinal Stromal Tumors/surgery , Gastrointestinal Stromal Tumors/drug therapy , Gastrointestinal Stromal Tumors/pathology , Dogs , Imatinib Mesylate/therapeutic use , Dog Diseases/drug therapy , Dog Diseases/surgery , Female , Antineoplastic Agents/therapeutic use , Adenosine Triphosphate/therapeutic use , Indoles , Pyrroles
3.
Front Vet Sci ; 11: 1385958, 2024.
Article in English | MEDLINE | ID: mdl-38812565

ABSTRACT

Recently, herpesvirus of turkeys (HVT), which was initially employed as a vaccine against Marek's disease (MD), has been shown to be a highly effective viral vector for producing recombinant vaccines that can simultaneously express the protective antigens of multiple poultry diseases. Prior to the development of commercial HVT-vectored dual-insert vaccines, the majority of HVT-vectored vaccines in use only contained a single foreign gene and were often generated using time-consuming and inefficient traditional recombination methods. The development of multivalent HVT-vectored vaccines that induce simultaneous protection against several avian diseases is of great value. In particular, efficacy interference between individual recombinant HVT vaccines can be avoided. Herein, we demonstrated the use of CRISPR/Cas9 gene editing technology for the insertion of an IBDV (G2d) VP2 expression cassette into the UL45/46 region of the recombinant rHVT-HA viral genome to generate the dual insert rHVT-VP2-HA recombinant vaccine. The efficacy of this recombinant virus was also evaluated in specific pathogen-free (SPF) chickens. PCR and sequencing results showed that the recombinant virus rHVT-VP2-HA was successfully constructed. Vaccination with rHVT-VP2-HA produced high levels of specific antibodies against IBDV (G2d) and H9N2/Y280. rHVT-VP2-HA can provide 100% protection against challenges with IBDV (G2d) and H9N2/Y280. These results demonstrate that rHVT-VP2-HA is a safe and highly efficacious vaccine for the simultaneous control of IBDV (G2d) and H9N2/Y280.

4.
Adv Mater ; 36(26): e2314164, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38608715

ABSTRACT

The potential of monolithic 3D integration technology is largely dependent on the enhancement of interconnect characteristics which can lead to thinner stacks, better heat dissipation, and reduced signal delays. Carbon materials such as graphene, characterized by sp2 hybridized carbons, are promising candidates for future interconnects due to their exceptional electrical, thermal conductivity and resistance to electromigration. However, a significant challenge lies in achieving low contact resistance between extremely thin semiconductor channels and graphitic materials. To address this issue, an innovative wafer-scale synthesis approach is proposed that enables low contact resistance between dry-transferred 2D semiconductors and the as-grown nanocrystalline graphitic interconnects. A hybrid graphitic interconnect with metal doping reduces the sheet resistance by 84% compared to an equivalent thickness metal film. Furthermore, the introduction of a buried graphitic contact results in a contact resistance that is 17 times lower than that of bulk metal contacts (>40 nm). Transistors with this optimal structure are used to successfully demonstrate a simple logic function. The thickness of active layer is maintained within sub-7 nm range, encompassing both channels and contacts. The ultrathin transistor and interconnect stack developed here, characterized by a readily etchable interlayer and low parasitic resistance, leads to heterogeneous integration of future 3D integrated circuits (ICs).

5.
JAMA Oncol ; 10(6): 737-743, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38662364

ABSTRACT

Importance: Prospective data assessing the safety of hypofractionated (40 Gy in 16 fractions) radiotherapy (RT) among patients who receive postoperative concurrent chemoradiotherapy for cervical cancer are lacking. Objective: To evaluate the acute toxic effects of hypofractionated pelvic intensity-modulated radiotherapy (IMRT) with concurrent chemotherapy among women with cervical cancer who underwent radical hysterectomy. Design, Setting, and Participants: The POHIM-CCRT (Postoperative Hypofractionated Intensity-Modulated Radiation Therapy With Concurrent Chemotherapy in Cervical Cancer) study was designed as a multicenter, phase 2 nonrandomized controlled trial that accrued and followed up patients from June 1, 2017, to February 28, 2023. In total, 84 patients were enrolled from 5 institutions affiliated with the Korean Radiation Oncology Group. Eligible patients experienced lymph node metastasis, parametrial invasion, or positive resection margins after radical hysterectomy for treatment of confirmed cervical cancer. Intervention: Postoperative pelvic radiation using hypofractionated IMRT with 40 Gy in 16 fractions to the whole pelvis combined with concurrent chemotherapy. Main Outcomes and Measures: The primary end point was incidence of acute grade 3 or higher gastrointestinal tract, genitourinary, and hematologic toxic effects (based on the National Cancer Institute Common Terminology Criteria for Adverse Events, version 4.0) in the evaluable population during RT or within 3 months after RT completion. Results: Of 84 patients enrolled, 5 dropped out prior to RT, and data from 79 patients were analyzed. The patients' median (IQR) age was 48 (42-58) years, and the median (IQR) tumor size was 3.7 (2.7-4.5) cm. Of these patients, 31 (39.7%) had lymph node metastasis, 4 (5.1%) had positive resection margins, and 43 (54.4%) had parametrial invasion. Grade 3 or higher acute toxic effects occurred in 2 patients (2.5% [90% CI, 0%-4.8%]). After a median (IQR) follow-up of 43.0 (21.1-59.0) months, the 3-year disease-free survival rate was 79.3%, and the overall survival rate was 98.0%. Conclusions: Findings from this nonrandomized control trial indicated that postoperative pelvic irradiation combined with concurrent chemotherapy using hypofractionated IMRT with 40 Gy in 16 fractions was safe and well-tolerated in women with cervical cancer. Studies assessing long-term toxic effects and oncological outcomes with longer follow-up periods are needed. Trial Registration: ClinicalTrials.gov Identifier: NCT03239613.


Subject(s)
Chemoradiotherapy , Radiation Dose Hypofractionation , Radiotherapy, Intensity-Modulated , Uterine Cervical Neoplasms , Humans , Female , Uterine Cervical Neoplasms/pathology , Uterine Cervical Neoplasms/therapy , Uterine Cervical Neoplasms/mortality , Uterine Cervical Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/adverse effects , Middle Aged , Adult , Chemoradiotherapy/adverse effects , Hysterectomy , Prospective Studies , Aged
6.
Biosensors (Basel) ; 14(3)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38534231

ABSTRACT

The sensing responses of SARS-CoV-2 spike protein using top-down-fabricated Si-based electrolyte-gated transistors (EGTs) have been investigated. An aptamer was employed as a receptor for the SARS-CoV-2 spike protein. The EGT demonstrated excellent intrinsic characteristics and higher sensitivity in the subthreshold regime compared to the linear regime. The limit of detection (LOD) was achieved as low as 0.94 pg/mL and 20 pg/mL for the current and voltage sensitivity, respectively. To analyze the sensing responses of EGT in detecting the aptamer-SARS-CoV-2 spike protein conjugate, a lumped-capacitive model with the presence of an effective dipole potential and an effective capacitance of the functionalized layer component was employed. The aptamer-functionalized EGT showed high sensitivity even in 10 mM phosphate-buffered saline (PBS) solution. These results suggest that Si-based EGTs are a highly promising method for detecting SARS-CoV-2 spike proteins.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Electrolytes , Oligonucleotides
7.
Animals (Basel) ; 14(6)2024 Mar 12.
Article in English | MEDLINE | ID: mdl-38539970

ABSTRACT

Since the outbreak of the H9N2/Y439 avian influenza virus in 1996, the Korean poultry industry has incurred severe economic losses. A novel possibly zoonotic H9N2 virus from the Y280-like lineage (H9N2/Y280) has been prevalent in Korea since June 2020, posing a threat to the poultry sector. Rapid mutation of influenza viruses urges the development of effective vaccines against newly generated strains. Thus, we engineered a recombinant virus rHVT/Y280 to combat H9N2/Y280. We integrated the hemagglutinin (HA) gene of the H9N2/Y280 strain into the US2 region of the herpesvirus of turkeys (HVT) Fc126 vaccine strain, utilizing CRISPR/Cas9 gene-editing technology. The successful construction of rHVT/Y280 was confirmed by polymerase chain reaction and sequencing, followed by efficacy evaluation. Four-day-old specific pathogen-free chickens received the rHVT/Y280 vaccine and were challenged with the H9N2/Y280 strain A21-MRA-003 at 3 weeks post-vaccination. In 5 days, there were no gross lesions among the vaccinated chickens. The rHVT/Y280 vaccine induced strong humoral immunity and markedly reduced virus shedding, achieving 100% inhibition of virus recovery in the cecal tonsil and significantly lowering tissue viral load. Thus, HVT vector vaccines expressing HA can be used for protecting poultry against H9N2/Y280. The induction of humoral immunity by live vaccines is vital in such cases. In summary, the recombinant virus rHVT/Y280 is a promising vaccine candidate for the protection of chickens against the H9N2/Y280.

8.
Vaccines (Basel) ; 12(3)2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38543860

ABSTRACT

Infectious bursal disease (IBD), caused by IBD virus (IBDV), is an extremely contagious immunosuppressive disease that causes major losses for the poultry industry worldwide. Recently, the novel variant IBDV (G2d) has been highly prevalent in Korea, but the current vaccines against this very virulent IBDV have limited efficacy against this novel variant. To develop a vaccine against this variant IBDV, a recombinant virus designated rHVT-VP2 was constructed by inserting the IBDV (G2d) VP2 gene into herpesvirus of turkeys (HVT) using CRISPR/Cas9 gene-editing technology. The PCR and sequencing results obtained showed that the recombinant virus rHVT-VP2 was successfully constructed. Vaccination with rHVT-VP2 generated IBDV-specific antibodies in specific pathogen-free chickens starting from 2 weeks post-immunization. Seven days after the challenge, the autopsy results showed that the bursa atrophy rates of the rHVT-VP2, HVT, vaccine A, and positive control groups were 0%, 100%, 60%, and 100%, respectively, and the BBIX values were 1.07 ± 0.22, 0.27 ± 0.05, 0.64 ± 0.33, and 0.32 ± 0.06, respectively. These results indicate that rHVT-VP2 can provide 100% protection against a challenge with the IBDV (G2d), whereas vaccine A only provides partial protection. In conclusion, vaccination with the recombinant virus rHVT-VP2 can provide chickens with effective protection against variant IBDV (G2d).

9.
Animals (Basel) ; 14(5)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38473165

ABSTRACT

Avian paramyxoviruses (APMVs) are often carried by wild waterfowl, and the wild waterfowl may play an important role in the maintenance and spread of these viruses. In this study, we investigated APMVs in the population of migratory wild waterfowl from 2015 to 2021 in Korea and analyzed their genetic characteristics. Fourteen viruses were isolated and subsequently identified as APMV-1 (n = 13) and APMV-13 (n = 1). Phylogenetic analysis of the full fusion gene of 13 APMV-1 isolates showed that 10 APMV-1 isolates belonged to the class II sub-genotype I.2, which was epidemiologically linked to viruses from the Eurasian continent, and 3 viruses belonged to class I, which linked to viruses from the USA. The APMV-13 isolates from wild geese in this study were highly homology to the virus isolated from China. Sequence analysis of 14 isolates showed that all isolates had a typical lentogenic motif at the cleavage site. In summary, we identified the wild species likely to be infected with APMV and our data suggest possible intercontinental transmission of APMV by wild waterfowl. Our current study also provides the first evidence for the presence of class I of APMV-1 and APMV-13 in wild waterfowl surveyed in Korea.

10.
Trends Endocrinol Metab ; 35(5): 425-438, 2024 May.
Article in English | MEDLINE | ID: mdl-38423898

ABSTRACT

Inflammation plays an essential role and is a common feature in the pathogenesis of many chronic diseases. The exact mechanisms through which sodium-glucose cotransporter-2 (SGLT2) inhibitors achieve their much-acclaimed clinical benefits largely remain unknown. In this review, we detail the systemic and tissue- or organ-specific anti-inflammatory effects of SGLT2 inhibitors using evidence from animal and human studies. We discuss the potential pathways through which SGLT2 inhibitors exert their anti-inflammatory effects, including oxidative stress, mitochondrial, and inflammasome pathways. Finally, we highlight the need for further investigation of the extent of the contribution of the anti-inflammatory effects of SGLT2 inhibition to improvements in cardiometabolic and renal outcomes in clinical studies.


Subject(s)
Anti-Inflammatory Agents , Inflammation , Sodium-Glucose Transporter 2 Inhibitors , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2 Inhibitors/therapeutic use , Humans , Animals , Inflammation/drug therapy , Inflammation/metabolism , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Oxidative Stress/drug effects
11.
Int J Mol Sci ; 25(3)2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38338668

ABSTRACT

Non-alcoholic steatohepatitis (NASH) is an inflammatory form of non-alcoholic fatty liver disease (NAFLD), closely associated with disease progression, cirrhosis, liver failure, and hepatocellular carcinoma. Time-restricted feeding (TRF) has been shown to decrease body weight and adiposity and improve metabolic outcomes; however, the effect of TRF on NASH has not yet been fully understood. We had previously reported that inositol polyphosphate multikinase (IPMK) mediates hepatic insulin signaling. Importantly, we have found that TRF increases hepatic IPMK levels. Therefore, we investigated whether there is a causal link between TRF and IPMK in a mouse model of NASH, i.e., methionine- and choline-deficient diet (MCDD)-induced steatohepatitis. Here, we show that TRF alleviated markers of NASH, i.e., reduced hepatic steatosis, liver triglycerides (TG), serum alanine transaminase (ALT) and aspartate aminotransferase (AST), inflammation, and fibrosis in MCDD mice. Interestingly, MCDD led to a significant reduction in IPMK levels, and the deletion of hepatic IPMK exacerbates the NASH phenotype induced by MCDD, accompanied by increased gene expression of pro-inflammatory chemokines. Conversely, TRF restored IPMK levels and significantly reduced gene expression of proinflammatory cytokines and chemokines. Our results demonstrate that TRF attenuates MCDD-induced NASH via IPMK-mediated changes in hepatic steatosis and inflammation.


Subject(s)
Choline Deficiency , Non-alcoholic Fatty Liver Disease , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Methionine/metabolism , Choline/metabolism , Choline Deficiency/complications , Choline Deficiency/metabolism , Liver/metabolism , Racemethionine/metabolism , Diet , Inflammation/metabolism , Chemokines/metabolism , Mice, Inbred C57BL , Disease Models, Animal
12.
Animals (Basel) ; 14(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38254451

ABSTRACT

Canine atopic dermatitis (CAD) is a genetically predisposed inflammatory pruritic skin disease. The available treatments for CAD have several adverse effects and vary in efficacy, indicating the need for the development of improved treatments. In this study, we aimed to elucidate the therapeutic effects of allogeneic and xenogeneic exosomes on CAD. Six laboratory beagle dogs with CAD were randomly assigned to three treatment groups: control, canine exosome (cExos), or human exosome (hExos) groups. Dogs in the cExos and hExos groups were intravenously administered 1.5 mL of cExos (5 × 1010) and hExos (7.5 × 1011) solutions, respectively, while those in the control group were administered 1.5 mL of normal saline three times per week for 4 weeks. Skin lesion score and transepidermal water loss decreased in cExos and hExos groups compared with those in the control group. The exosome treatments decreased the serum levels of inflammatory cytokines (interferon-γ, interleukin-2, interleukin-4, interleukin-12, interleukin-13, and interleukin-31) but increased those of anti-inflammatory cytokines (interleukin-10 and transforming growth factor-ß), indicating the immunomodulatory effect of exosomes. Skin microbiome analysis revealed that the exosome treatments alleviated skin bacterial dysbiosis. These results suggest that allogeneic and xenogeneic exosome therapy may alleviate CAD in dogs.

SELECTION OF CITATIONS
SEARCH DETAIL